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ABSTRACT

This paper presents an innovative flexibility analysis as a practical, effective procedure to improve the
expected value of large-scale, capital-intensive projects when there is market uncertainty. Its novelty lies
in its approach and scope. Its approach develops understanding of the drivers of the value of flexibility,
so as to build acceptance among decision-makers. Its scope explicitly considers the combined effects of
uncertainty, economies of scale, learning, and geographic distribution. It demonstrates how these factors
combine to impact the benefits of flexibility in the early stages of design and project evaluation in
the context of uncertainty. It makes this point through a specific example: the long-term deployment of
liquefied natural gas (LNG) technology to supply the transportationmarket. It contrasts the base case fixed
design (a big centralized production facility) with flexible modular designs that phase capacity additions
over time and space. The proposed flexibility method compares design alternatives based on several
indicators of economic lifecycle performance (Net Present Value (NPV), Initial Capex, etc.). Results indicate
that flexible modular deployment strategies can significantly improve the economic performance of large,
expensive projects. As sensitivity analyses show, the improvements can be significant over a wide range of
analytical assumptions. An important insight is that higher learning rates increase the benefits of flexibility,
counteracting the effects of economies of scale. Overall, the study shows that flexibility in engineering
design of major production facilities such as LNG plants has multiple, supporting advantages due to
uncertainty, learning, and location. C⃝ 2015 Wiley Periodicals, Inc. Syst Eng 18: 253–268, 2015
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1. INTRODUCTION

This paper presents an innovative flexibility analysis as a
practical, effective procedure to improve the expected value
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of large-scale, capital-intensive projects when there is mar-
ket uncertainty. Its novelty lies in its approach and scope.
As to approach, it develops understanding of the drivers of
the value of flexibility, and thus builds acceptance among
decision-makers. As to scope, it explicitly considers the com-
bined effects of uncertainty, economies of scale, learning, and
geographic distribution. The approach enables developers to
understand how to adapt the system for better performance
as its requirements and opportunities evolve over its useful
life. It achieves this by exploiting modularity in design [de
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Neufville and Scholtes, 2011; Cardin, 2014]. The study con-
trasts with other analyses in that it explicitly and innovatively
considers the combined effects of uncertainty, the time value
of money, economies of scale, learning, and geographic dis-
persion of demand on the economic benefits of flexibility in
design.
The study demonstrates the approach in the context of a

case analysis for the design of a liquid natural gas (LNG)
production system. This is an important issue, given the in-
creasing role of LNG in energy markets. The advantage of
using natural gas products has increased over the last decades,
resulting in a considerable growth in demand for LNG. Re-
search has shown that by 2030 the demand for this fuel could
be more than three times higher than in 2011 [Kumar et al.,
2011].
Increased price differentials between LNG and competing

energy sources have stimulated this demand. In 1997, U.S.
fuel prices hovered around $20/barrel of oil (West Texas
Intermediate—WTI) and $2.50/Million British thermal
unit (MMBtu) for Henry Hub natural gas. By 2011, these
prices were around $100/barrel for oil and $5/MMBtu for
natural gas [GLE, 2011]. While the price of oil rose five
times, that of natural gas only doubled, thus making gas
much more economically attractive. While the absolute
ratio of oil and LNG prices fluctuates substantially, LNG
has maintained its relative attractiveness. As of November
2014, the spot prices for oil and LNG were about $80/barrel
and $4/MMBtu.
LNG is a physically attractive fuel because it has high

energy density and is “greenˮ. Its volume is 600 times less
than the same amount of natural gas at room temperature
while the volume of compressed natural gas (CNG) is 1%
less of its original volume [GLE, 2013]. A road truck can
go around 800–1,200 km (500–750 miles) on a tank of LNG
[GLE, 2011]. Furthermore, new emissions control regulations
are increasing the attractiveness of LNG for road transport.
Such advantages make LNG a potentially excellent choice for
the heavy transportation sector.
The business opportunities for LNG production are eco-

nomically risky, however. They require substantial initial in-
vestments subject to great market uncertainties in the demand
for and price of LNG. Initial forecasts are almost certainly
wrong. Designs could easily be too large and lose money,
or too small and miss opportunities. The issue is: how do
we manage such risks? How do we develop the system to
maximize expected benefits?
This paper proposes a method to address this kind of issue,

that of developing an economically optimal deployment of
a large-scale complex system in the face of uncertainty. It
leads to the consideration of a design of a flexible system,
one that configures the system to minimize possible downside
outcomes, while positioning it to take advantage of upside
opportunities. The next section discusses the analytic back-
ground to flexibility in systems design. Section 3 provides the
details of the proposed methodology. Section 4 demonstrates
the implementation of the approach, using the case study of
an LNG production system. The final section summarizes
major findings, providing conclusions and insights for further
research.

2. ANALYTIC BACKGROUND

2.1. Flaw of Averages

Basing design and investment decisions on the most likely or
average scenario generally leads to suboptimal results. This
is because the value resulting from the overall distribution
of the uncertainties is not equal to the value associated to
the average. Assuming otherwise is to fall for the “Flaw of
Averages” [Savage, 2009]. Since systems response are almost
universally non-linear, the increased output from an upside
scenario (e.g., high demand growth) generally does not bal-
ance the lost output from a similar downside scenario (e.g.,
low demand growth). This mathematical truism is sometimes
known as Jensen’s Law. Equation (1) captures this formally.

f (E [x]) ≠ E
[
f (x)

]
, (1)

Here, f(E[x]) is the net present value (NPV) associated
with the expected LNG demand E[x] (i.e., the time-
discounted value of the cash flows generated by the project).
This quantity is not equal to the actual expected NPV
E[ f (x)]associated with the distribution of demands (x). In
practice, Equation (1) means that the economic evaluation of
a design based on the average or expected demand scenario
does not correctly value any design, and thus does not cor-
rectly identify the best solution.
For example, consider a hypothetical LNG facility: it can

produce 1.0 ton per day (tpd) of LNG to supply this expected
or average demand forecast, and its value is NPV (1.0) =
$ 1.0 million when operating at this capacity. Consider what
happens when the actual demand varies from the average, for
example if the demand were equally likely to be 0.5, 1.0,
and 1.5 tpd. The actual NPV for the lower demand is less
than for the design conditions (operating at half capacity), say
NPV (0.5) = $ 0.5 million. On the other hand, the value for
the highest demand would be limited by the plant capacity,
and so NPV (1.5) = $ 1.0million. Then the expected value of
the facility would actually be:

E [NPV] = 1∕3 (0.5 + 1.0 + 1.0) = $0.83million

which is less than the value of the average demand,
NPV (1.0) = $ 1.0 million. This example illustrates the Flaw
of Averages and emphasizes the need to consider the entire
distribution of uncertainties in order to value projects cor-
rectly. The correct expected value of a project may be greater
or smaller than that misleadingly estimated using averages of
uncertain parameters. The important fact is that it is different,
often greatly so.

2.2. Use of Simulation

Monte Carlo simulation is now a usual means to assess the be-
havior and value of systems subject to distributions of uncer-
tainty [de Neufville and Scholtes, 2011; Cardin, 2014].Monte
Carlo simulation is a general approach that can easily model
complex systems under any form of probability distribution,
of any shape, continuous or discrete. Monte Carlo simulation
provides the freedom tomodel precisely the detailed attributes
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of real-world problems, using realistic design variables,
parameters and decision rules. In practice, Monte Carlo sim-
ulation examines the effects of combinations of the uncertain
parameters, taking each at its frequency of occurrence. It thus
performs a large number of valuations, routinely well into the
thousands. The only real limit to Monte Carlo simulation is
computer capacity.
Although simulation of complex systems design can be

computationally expensive, advances in computational tech-
nology and improved software processes are enabling faster,
more efficient, and less expensive analyses [Neches and
Madni, 2013]. de Neufville et al. [2006] for example showed
how designers of infrastructure systems can evaluate engi-
neering systems using spreadsheet simulations.
From a purely theoretical point of view, practical NPV

valuations based on simulation have a distinct weakness.
From a theoretical perspective, a correct economic analysis
would not use a fixed discount rate, but would adjust it for
the degree of risk and uncertainty, using a higher rate when
the risk is greater. Procedures for making such adjustments
do exist, such as the binomial lattice method using the so-
called “risk-neutral” probabilities [Luenberger, 1996]. How-
ever these methods are only validly applicable under very
specific conditions that are essential for properly defining
the relationship between risk and the risk-adjusted discount
rate. Specifically, they impose assumptions concerning the
existence of a ready, full-information and complete market
for the things being valued. The fact is however, that systems
engineering projects generally neither exist nor are traded in
any market, let alone those satisfying the conditions that ap-
propriately justify “risk-neutral” adjustments. Cardin [2014]
provides a detailed discussion of the pros and cons of other
approaches to value flexibility in an engineering setting. On
balance, despite conceptual drawbacks, the accepted engi-
neering approach values projects under uncertainty using sim-
ulation and fixed discount rates.

2.3. Flexibility in Engineering Design

To maximize the value of a project in the context of un-
certainty, we must structure projects with the capability to
adjust to the evolution of uncertainties over time. The general
idea is that optimal system designs generally should have the
capacity to avoid the worst risks, and take advantage of favor-
able opportunities. That is, they should have “real options,”
defined technically as the “right, but not the obligation,” to
adjust the system favorably in the face of uncertainty. For
example, the spare tire on a car makes it possible to overcome
the inability to move after a blowout. Likewise, the provision
of extra structural strength in a suspension bridge enables its
owners to double-deck it in case of need (as was done for
New York’s George Washington Bridge, and for Lisbon’s 25
de Abril Bridge). That is, designers can improve the economic
value of systems under uncertainty by using real options,
otherwise known as flexibility in design.
Flexibility in engineering design and its evaluation tech-

niques have evolved in systems engineering practice through
adaptation of concepts from financial options analysis (e.g.,
Black and Scholes [1973]; Cox et al. [1979]) and real

options analysis (e.g., [Dixit and Pindyck, 1994, Trigeorgis,
1996]) in ways that suit the needs of engineering design in a
highly uncertain world. Thus Browning and Honour [2008]
proposed a conceptual approach to quantify the life-cycle
value of a system. They concluded that to maximize life-cycle
value, we should design systems to facilitate adaptability to
changing circumstances and stakeholder preferences. Engel
and Browning [2008] complementarily presented quantita-
tive models to assess the value of adaptability of system
architecture as a means of maximizing its lifetime value.
Fitzgerald et al. [2012] presented a “valuation approach for
strategic changeability” (VASC) based upon Epoch Era Anal-
ysis (EEA) [Ross, 2006; Ross and Rhodes, 2008] to in-
vestigate the value of changeability in complex engineering
systems at early stage of the design process.
To make the best use of flexibility we need to know when

to exercise our options. Specifically, we need decision rules
to guide the use of flexibility. In principle, these could be
normative or descriptive. In practice, it has so far only been
possible to define normative decision rules for a limited num-
ber of situations that are too simplistic for complex systems
(e.g., path independent evolution of uncertainties with only
one option to exercise, as to exercise a call in a stock market).
Decision rules appropriate for most analyses of engineering
systems thus descriptively reflect how system operators might
actually adapt the system in light of uncertainty realizations.
Thus the VASC model has transition rules based on a defined
set of change mechanisms. The methodology proposed in
this paper embeds pre-defined decision rules in the Monte
Carlo simulation. As the choice of the decision rule affects the
lifecycle performance of the system, it benefits from guidance
and thorough evaluation [Cardin, 2014].
The term “flexibility” has different definitions in different

contexts. Some researchers have sought to clarify this mean-
ing to facilitate communication among systems engineering
practitioners and academics [Ross et al., 2008; Ryan et al.,
2013]. Flexibility in engineering design is certainly an in-
terdisciplinary field for research and practice [de Neufville
and Scholtes, 2011; Cardin, 2014]. It adapts the concept of
financial options to engineering systems, giving rise to the
concept of “real options.ˮ The goal is to increase expected
economic value by providing the adaptive strategies to re-
spond to uncertainties most profitably [Trigeorgis, 1996].
Flexibility exists “on” and “in” engineering systems.

Flexibility “on” systems is associated with managerial
flexibility such as abandoning or deferring the deployment
of a system until favorable market conditions occur;
expanding/contracting/reducing capacity; deploying capacity
over time; switching inputs/outputs; and mixing the above
[Trigeorgis, 1996]. Flexibility “in” systems refers to technical
design components that enable the flexibility to change
system capacity or functionality [Wang, 2005]. Cardin
[2014] provides a taxonomy and framework to organize
design and evaluation activities that enable flexibility in
engineering systems.
In sum, flexibility in engineering design enables a system to

capture the potential value associatedwith different scenarios.
For instance, it might enable the capture of more demand in
cases of high demand, thus increasing the expected economic
value (i.e., like a call option). It might reduce financial losses
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in a downside demand scenario (i.e., like insurance or a put
option). Flexibility in design enables desirable changes in
configuration (e.g., by increasing capacity as needed) over
time and thus increases the cumulative density function of the
value of the design.

3. METHODOLOGY

3.1. Overall Concept

The proposed flexibility analysis aims to be an innovative,
practical, and effective procedure to identify possible
improvements in the expected value of large-scale, capital-
intensive projects when there is market uncertainty. Its
novelty lies in the way it develops understanding of the
drivers of the value of flexibility, and thus helps to build
acceptance among decision-makers. In this vein it explicitly
brings out the individual and combined effects of uncertainty,
the time value of money, economies of scale, and learning.
This paper addresses the following problem: although

researchers well understand the value of flexibility, in practice
decision-makers have neither appreciated its significance,
nor widely accepted the concept. The implicit conversation
between the analyst and the decision-maker goes often
something like this:

Analyst: Although you have not done so before, we need to
look at uncertainties. I have done so. My calculations show
that you can expect much improved performance using a
novel design.

Decision-Maker:Our designs have worked well. Your uncer-
tainties are full of assumptions. I do not understand how it is
possible to increase expected value so dramatically. I cannot
risk your proposed solution, especially if it costs more, and I
may not use the flexibility in the end. [Please go away.]

The point is this: an effective flexibility analysis should not
only develop good answers, it must make them credible. To
achieve this, it should facilitate understanding of how and
why flexibility delivers value. The proposed methodology
provides a way to achieve this appreciation.
The methodology builds understanding of the value of flex-

ibility in two ways. The overall approach is to focus indi-
vidually in sequence on the four elements of the flexibility
analysis: the valuation model, the uncertainty analysis, the
analysis of specific options for flexibility, and the necessary
sensitivity analysis. The detailed part of the analysis examines
the specific contributions of economies of scale, discount
rate, and learning, and geographic distribution to the value
of flexibility, thus helping decision-makers develop a more
intuitive understanding of the drivers of value.
Figure 1 illustrates the process. Rather than providing a

final overall result as the product of the analysis, the proposed
approach explicitly considers and reports on the four principal
elements of the flexibility analysis.

• Step 1 establishes the basic Discounted Cash Flow
(DCF) valuation model that integrates inputs, con-
straints, and outputs to obtain the correct total net value
of the system for any assumed possible outcomes, prop-

erly discounting for the time value of resources. The step
then exercises the model for the usual deterministic case
of fixed specifications with no uncertainty. This demon-
strates the model and provides the base case design.

• Step 2 sets up the uncertainty environment and then
applies this context to the base case model using simula-
tion. Unless the system being analyzed is trivial (specif-
ically linear and unconstrained) the value we obtain in
this step is different, generally significantly so, from
the result obtained for the Step 1 base case. Unless the
uncertainties are negligible, this observation shows the
decision-maker that the deterministic base case provides
an incorrect result, and thus that the design process needs
to consider uncertainty. This conceptual result does not
depend on the specific form of the uncertainty distribu-
tion. It is a simple result of Jensen’s Law, Equation (1).

• Step 3 then explores the value of various forms of flex-
ibility. In general (but not necessarily) these involve
modules of performance or capacity. The exploration
considers how designers can implement these modules
both over time (as uncertainty about system require-
ments resolves) and over space (the “moveˮ alternative).
In general, the results of these analyses demonstrate
that flexible strategies can lead to significant increases
in value compared to the base case design, which is
typically more rigid and optimized for the set of initial
assumptions.

• Step 4 develops the sensitivity analyses that identify the
drivers of the value of flexibility. This process helps the
decision-maker understand how and why characteristics
of the system and its situation give value to flexibility.
This detailed part of the analysis shows how greater dis-
count rates, learning effects, and geographic distribution
counterbalance economies of scale in defining the value
of flexibility.

Additionally, the proposed approach incorporates the abil-
ity to consider different measures of performance, such as
NPV, Value at Risk (VaR), Value at Gain (VaG), Standard
Deviation of results (STD), and Initial capital expenditures
(Capex), which is often a major consideration for investors
in risky projects. It also allows the use of procedures to
help generate flexibility strategies, such as prompting Cardin
et al. [2013a] and the Integrated Real Options Framework by
Mikaelian et al. [2011].

3.2. Step 1: Deterministic Analysis

The methodology starts with a deterministic analysis consid-
ering a fixed design as benchmark. The aim is to understand
the key components of the system that influence its lifecycle
performance. In practice, the standard industry performance
metric for project evaluation is NPV [Cardin et al., 2013b],
but alternatives exist. The NPV is the sum of cash flows of
revenues and costs, TRt and TCt , over the project life, T,
discounted at the rate r, see Equation (2).

NPV =
T∑
t=1

TRt − TCt
(1 + r )t

(2)
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Figure 1. A methodology to evaluate and compare candidate flexible system designs.

Demand for the products of the system is a key driver of its
performance. It is possible to model demand in many ways,
and analysts should choose the model appropriate for the
situation. For example, in the case of a new product an s-curve
function may be most reasonable (3), reflecting initial low
demand, followed by a period of rapid growth, that eventually
tapers as it approaches saturation. In this case, MD

T is the
maximum expected demand; bD is the sharpness parameter
that determines how fast demand grows over time to reach
the upper bound for demand, and aD defined in Equation (4)
translates the curve horizontally over the time axis.

DD
t =

MD
T

1 + aDe−bDt
(3)

aD =
MD
T

DD
0

− 1. (4)

3.3. Step 2: Uncertainty Analysis

This step models the major uncertainty drivers and analyzes
their effect on lifetime system performance. The analysis uses
the distribution of input parameters over time to calculate the

distribution of the performance metric. Each demand scenario
s leads to a performance outcome, NPVS. Simulation is the
conventional way to do this, but analysts can use different
techniques (e.g., decision trees, binomial lattice).
We create a stochastic version of demand using uncertainty

factors. The case study used the s-shaped model of demand.
As in Equation (5), MU

T is the stochastic demand limit and bU
is the stochastic sharpness parameter in the demand model
under uncertainty. Equation (6) defines aU as the stochastic
translation factor that varies due to volatilities in initial de-
mand (i.e., DU

0 ) and demand limit. Realized demand at time
t+1 equals realized demand at time t plus annual volatility
multiplied by growth rate Gt at time t, as in Equation (7).
While other assumptions are possible, it is convenient to as-
sume that Gt follows a standard normal distribution and Av
is a fixed parameter calibrated using historical data.

DU
t =

MU
T

1 + aUe−bU t
(5)

aU =
MU
T

DU
0

− 1 (6)

DU
t+1 = DU

t + (Av × Gt ). (7)
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The uncertainty analysis results in a distribution of possible
performance outcomes. The obvious way to compare this
result to that of the deterministic model is to focus on the ex-
pected value of the distribution of NPV, or ENPV, calculated
according to Equation (8). As per Equation (1), the overall
result is that the ENPV does not equal the deterministic NPV,
which makes the point that the deterministic analysis that
ignores uncertainties may lead to an erroneous result.

ENPV = 1
N

×
N∑
s=1

NPVs . (8)

Note that the ENPVmetric implies risk neutral preferences,
which may not always be appropriate. Indeed, decision-
makers often take downside risk into account and weight it
heavily. It is thus often useful to supplement the ENPVmetric
with others that represent the extreme distributions of the
outcomes, such as the VaR (e.g. expressed as 5th percentile
of the distribution or P5) for a given level of probability and,
complementarily, the potential for upside gain, the VaG (e.g.
expressed as 95th percentile or P95). More sophisticated mul-
ticriteria decision-making approaches are also available when
it is desirable to consider both quantitative and qualitative
criteria [Georgiadis et al., 2013].

3.4. Step 3: Flexibility Analysis

Building on Step 2 that quantitatively demonstrates the exis-
tence of risks, Step 3 addresses the issue of risk management.
Specifically, it recognizes that system operators can change,
adapt, and reconfigure the system in light of how they see
events happen over time, of how they see uncertainty resolve.
It thus explores ways system designers can reduce risk and
increase opportunities. This can be done using prompting
mechanisms in a systematic series of questions in discussions
with collaborating field experts, to tease out the main uncer-
tainty drivers, and thus generate the flexibility strategy and
decision rules [Cardin et al., 2013a]. Alternatively, if the range
of possibilities is obvious, one can explore the space of possi-
ble flexible solutions using screening models or enumeration
techniques.
A standard approach to enable flexibility in design is to

build the system in modules, starting small and expanding
as appropriate. The possible advantage of this approach is
intuitive: building small at the start means that there is less to
lose; being able to expand as desired makes it possible to take
advantage of opportunities as and to the extent they emerge.

3.4.1. Economies of Scale
The degree of economies of scale is a most important sys-
tem characteristic as regards flexibility in design. Economies
of scale refer to the possible phenomenon that the average
cost per unit of capacity decreases with larger total capac-
ity. Economies of scale characterize many systems. Crudely
speaking, they prevail in systems whose capacity is propor-
tional to volume and whose cost is proportional to enclosing
surface: ships, aircraft, chemical plants, thermal power plants,
pipelines, and such. Economies of scale are important because

they drive designers toward the largest facilities, typically
intended to cater to future demands far into the future. That
is, economies of scale encourage immediate commitments
ahead of possible demand—and thereby discourage flexible
designs that might, for example, involve a modular approach
to capacity deployment using a series of smaller increments
[de Neufville and Scholtes, 2011].
The so-called cost function in Equation (9) provides a com-

mon representation of the phenomenon of economies of scale.
The parameter ! is the economies of scale factor: the lower !
is, the greater the economies of scale. Given the implications
of economies of scale for flexibility in design, the sensitivity
analysis should pay attention both to determining the ! scale
factor for a system, and to exploring its implications for the
design.

Capex of a f ixed plant = capacity! . (9)

3.4.2. Time Value of Money
The discount rate r reflects the time value of money and is
a key factor in the DCF valuation process. It properly dis-
counts the value of future benefits and costs, compared to
current investments—as in Equation (2). As regards flexibility
analysis, it provides a counterbalance to economies of scale.
Because it reduces the present cost of future investments, it
increases the relative attractiveness of a design strategy that
defers the cost of future additions to capacity, as by modules.
Manne [1967] discusses the tradeoffs between the economies
of scale and the time value of money in great detail.

3.4.3. Learning Rate
The learning rate refers to the descriptive fact that the cost
of modular capacity routinely decreases with the number of
units produced. This is a common observation: when we
do something for the first time we are relatively inefficient;
the more we repeat the task, the more we learn to be pro-
ductive. Hence the appellation of “learningˮ for the phe-
nomenon, even though in practice the cost reductions may
also come from design innovations and manufacturing im-
provements. Equation (10) represents this situation, whereU1
and Ui are the Capex of the first and ith modules, and B is
the slope of the learning curve determined empirically from
case studies [de Neufville and Scholtes, 2011]:

Ui = U1 × i B . (10)

The slope B is calculated with empirical values of learning
rate (LR%), as Equation (11) shows.

B = log(100% − LR%)∕Log (2) . (11)

The learning phenomenon encourages the use of modular
flexibility, as does the time value of money and for the same
reason: it counterbalances potential economies of scale by
making the cost of small modular increments of capacitymore
economical compared to large units. A good sensitivity anal-
ysis for flexibility will investigate the degree of the learning
effect.
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3.4.4. Geographic Dispersion
Geographic dispersion of the demand for a system product is
another driver favoring flexibility in design. The intuition is
direct: if demand is far away from a central point of supply,
then the distribution of modules of capacity to the points
of demand can reduce transportation costs, and overcome
possible extra unit costs of capacity associated with smaller
modules. Designers should also investigate this possibility.

3.4.5. Decision Rules
To account for system flexibility, the analysis embeds deci-
sion rules into the DCF model under uncertainty. These rules
both state the conditions under which system operators would
choose to take action, and implement the decisions in the
model. For example, to embed a flexible capacity expansion
policy in an Excel R⃝ spreadsheet DCF model under uncer-
tainty, we insert IF statements to test for conditions, whose
responses trigger actions such as the addition of capacity at
a given cost and at a specified time. Specifically, a decision
rule for capacity expansion could be: IF “observed aggre-
gate demand in the current year is higher than a threshold
value” THEN “implement extra modular capacity in next
year” ELSE “do nothing”. The threshold value determines
when the designer should build extra capacity. For example,
decision-makers may decide to add capacity as soon as the
difference between the realized and current capacity (i.e.,
unmet demand) reaches X% of existing capacity.

3.4.6. Value of Flexibility
The value of flexibility is the difference between the overall
system value with flexibility and that without flexibility as
calculated in Step 2, as Equation (11) indicates.

Flexibility Value = max(0,ENPVBest Flexible design

−ENPVOptimum fixed design). (12)

3.5. Step 4: Sensitivity Analysis

The primary role of sensitivity analysis, as concerns flexible
design, is to investigate the stability of the design decision.
Indeed, once we recognize that we cannot accurately predict
future demands on a system, we have also acknowledged that
we cannot define future performance precisely. The important
matter under these circumstances is to see how the analysis
has led to the preferable design, given the range of uncertain-
ties. The sensitivity analysis seeks to determine the range of
assumptions (e.g., model parameters) over which an optimal
design is still preferred or, conversely stated, at what point the
choice of solutionmight change. The proper role of sensitivity
analysis for design under uncertainty is to ascertain whether
the choice of design is robust.
The proposed method thus conducts sensitivity analyses on

key drivers of value, to explore how different assumptions
about system parameters might change decisions. Naturally,

this sensitivity analysis focuses on the parameters that are
least knowable (such as future demands), and that are the
focus of this study (such as economies of scale and learning
rates). The overall purpose is to investigate the robustness of
the optimal design and its sensitivity to key uncertain param-
eters.

4. DEMONSTRATION USING LNG CASE STUDY

4.1. Objectives

The prime objective of this section is to demonstrate the
use and value of the proposed methodology. We do this by
applying it to an important current issue: the development
of an LNG production system for road transport fuel. The
application follows the four-step analysis presented in the pre-
vious section. The result shows how the method can discover,
evaluate, and justify intuitively significant increases in value
using flexible design. The application also serves a second
objective, which is to illustrate potential flexible strategies for
LNG production. The emphasis here is on “potential strate-
gies.ˮ While the data used are representatively realistic for
the location considered at the time of analysis, these numbers
naturally differ from those appropriate in other places at other
times. The results obtained illustrate specific strategies worth
considering in the development of an LNG production system
and, by extension, more widely to petrochemical production
systems.

4.2. Description of LNG Case

As the Introduction indicates, the production of LNG is be-
coming a salient issue worldwide due to the growth of nat-
ural gas supply, and of the demand for this relatively in-
expensive “cleanˮ fuel with high energy density. However,
the deployment of a large-scale LNG production system is
economically risky, in view of the great uncertainty in future
demand. The overall questions are: What is the most eco-
nomically valuable strategy for deploying an LNG production
and distribution system? How do we design it in the face of
uncertainty?
The LNG supply chain links exploration, extraction,

liquefaction, transportation, storage and regasification. It has
many versions, as there are different upstream resources and
liquefaction processes (e.g., gas wells and plants onshore or
offshore), and different end users (e.g., power plant, home
use and transportation sector). Research in this area has
studied the coupled segments of large-scale shipping and
receiving terminal of an LNG supply chain to minimize
cost and storage inventory, while maximizing the output of
natural gas to be sold Özelkan et al. [2008]; tactical planning
to optimize the LNG inventory routing problem Grønhaug
and Christiansen [2009]; and transportation planning and
inventory management of a LNG supply chain used in tactical
planning during negotiations about deliveries to different
regasification terminals and annual delivery plan used in
operational level decision making Andersson et al. [2010].
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Designers need to evaluate LNG production systems in the
early stages of design, in particular to consider strategic level
decisions involving flexibility and uncertainty in the analysis
of site production capacity and deployment over time. In
addition, to these authors’ knowledge there has been no study
of the combined effects of economies of scale, time value
of money, learning, and geographic dispersal of the system
configuration. By investigating the effects of these strategic
factors affecting the design of LNG production systems, this
application offers a contribution to the understanding of this
opportunity.
This study investigated the proposed design and deploy-

ment of a LNG production and distribution system providing
fuel for highway trucks. Its scope within the LNG supply
chain is from the on-shore delivery of natural gas, through its
conversion into LNG through liquefaction at a main produc-
tion site, to its distribution to end users at five geographically
dispersed demand sites equipped with filling station facilities.
All sites have access to the pipeline network distributing the
natural gas.
Figure 2 schematically represents the three alternative de-

sign configurations of the LNG production and distribution
system. In each case, fuel trucks carry the LNG produced at
the main production site to the five demand sites. The designs
differ in the way they deploy capacity over time and space:

• Figure 2(a) represents the conventional design that cre-
ates an optimal single large facility taking advantage of
economies of scale. It is the fixed design.

• Figure 2(b) represents a flexible strategy that deploys
capacity at the central site according to how demand does
or does not grow over time. It is the “flexible strategy—
no move.ˮ

• Figure 2(c) is a more flexible strategy that allows for
gradual deployment of capacity both over time and
geographically to the demand sites. It is the “flexible
strategy—with move.ˮ

4.3. Parameters for LNG Case

Domain experts in LNG plant design and distribution devel-
oped the following parameters for the study:

• The time needed to build LNG capacity is 3 years at the
main production site, 2 years for the first modular plant
at each demand site, and 1 year for any modular addition
to existing capacity.

• The Capex cost of building a 25tpd capacity LNG plant
module is $25 million. The Capex of larger plants scales
according to Equation (9). The extra cost of any first
capacity deployment at each demand site, due to the
expense of tie-in to the natural gas pipeline and extra
land, is 10% of the Capex.

• The analysis examined economies of scale: ! = 1, 0.95,
0.9 and 0.85. The modular design analysis investigated
learning rates corresponding to LR = 0%, 5%, 10%,
15%, and 20%.

• The Opex operating cost of a plant is 5% of its Capex.
The transportation cost for distributing LNG from the

central production site is $0.4 per ton-kilometer, over the
118, 121, 281, 318, and 446 km distances to the demand
sites.

• The economic assumptions are: project lifetime = 20
years; corporate tax rate = 15%; and depreciation is
straight-line over 10 years with zero salvage value.

• Management stated that the discount rate should, in this
case, be taken as 10%.

• Demand is identical over the five demand sites; there is
no market at the main production site.

Realistically, future demand over the 20-year life of
the project is highly uncertain due to currently unknown
prices, competition, government regulations, and other
factors. Market research at the collaborating firm provided
the deterministic and stochastic LNG demand modeling
parameters summarized in Table I. While other types of
distributions such as Normal and Lognormal are possible,
it is convenient to assume that DU

0 , b
U , and MU

T follow a
uniform distribution; where ΔD0

is the limit on volatility of
the realized demand in year 0 as it differs from its projected
value; Δb defines the volatility of the sharpness parameter as
it differs from its forecasted value.

4.4. Step 1: Deterministic Analysis

The deterministic analysis determined the optimal size of
the central plant for a fixed forecast of the LNG demand. It
calculated the value of each of the plants consisting of 25 tpd
modules of capacity. It did this for the range of economies of
scale, from none (! = 1.0) to the highest assumed (! = 0.85).
Figure 3 graphs the results. The intuitive understanding is

that:

• There is a design “sweet spot” for the optimal plant size
(the stars on the curves) for any level of economies of
scale; build too small, and there is no profit from higher
demands—build too large, and there is overcapacity and
attendant lower values.

• The greater the economies of scale (smaller !), the larger
the fixed design should be. This because the economies
of scale lower the average unit cost of capacity and thus
favor larger designs.

4.5. Step 2: Uncertainty Analysis

The uncertainty analysis focused on the distribution of possi-
ble demand for LNG over time. Based on the demand param-
eters from market research in Table I, it used Monte Carlo
simulation to develop sequences of demand patterns over the
projected life of the project. Figure 4 compares the projected
deterministic LNG demand with 25 representative demand
scenarios. The large deviations between best estimate and
possible scenarios are as expected for long-term forecasts for
new technologies in new markets [de Neufville and Scholtes,
2011].
The analysis determined the optimal designs under uncer-

tainty by valuing each of the possible designs, as for the
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a: Fixed design b: Flexible design - no move c: Flexible design - with move 

LNG
Big LNG plant 

Filling station Fuel truck 

Modular LNG plants

LNG

LNG

Filling station with 
production facility

Figure 2. Alternative design configurations of the LNG production and distribution system.

Table I. Parameters Used in Deterministic and Uncertain Demand Modeling

Deterministic demand model Stochastic demand model

Parameter Value Parameters ∼ Uniform distribution Volatility Value

DD
0 5 tpd DU

0 ∼ Uniform (DD
0 (1 − ΔD0

), DD
0 (1 + ΔD0

)) ΔD0
50%

bD 0.35 bU∼ Uniform (bD(1 − Δb), bD(1 + Δb)) Δb 70%
MD

T
50 tpd MU

T
∼ Uniform (MD

T
(1 − ΔMT

),MD
T
(1 + ΔMT

)) ΔMT
50%

Figure 3. NPV of fixed designs under deterministic demand. Stars
show the optimum design for a given economies of scale factor.

Figure 4. Projected deterministic demand (dashed line) compared
to twenty-five realized scenarios.

deterministic case. The value of each possible design was a
distribution associated with the possible demand scenarios.
Because of the non-linearities within the system, inherent in
both its cost structure and the variations in demand, the shape
of the distribution of values differs from the distribution of
demand. To ensure comparability, the analysis valued each
design using the same set of demand scenarios. It relied on
2000 scenarios to develop distributions of value stable esti-
mates of the distribution of performance.
The results of the uncertainty analysis differ systemati-

cally and significantly from those of the deterministic analysis
(Table II). Most obviously, as expected from Jensen’s Law in
Equation (1), the values of the optimal designs are different.
Specifically the project values for any level of economies
of scale are lower. This is due to the fact that capacity-
constrained systems do not benefit from excess demand, but
do lose when the demand is less than anticipated, result-
ing in lower overall value (as the example in Section 2.1
illustrates).
Moreover, the uncertainty analysis leads to systematically

different optimum designs than the deterministic case. In this
example, the optimum fixed designs for the uncertain demand
are all systematically smaller than those suggested by the
deterministic analysis. This is due to the lower project values
that occur once the analysis takes uncertainty into account.
The analysis that properly accounts for uncertainty thus

demonstrates that the results of a deterministic analysis are
systematically incorrect. They are often doubly so, first by
providing incorrect estimates of value, and second by possibly
recommending designs that are in fact not optimal. [Excep-
tions to this pattern do occur, principally when there is little
uncertainty or if the systems responses are trivially linear.]
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Table II. Optimum Fixed Designs Under Deterministic and Uncertain LNG Demand with Different !

Optimum capacity (tons/day) Optimum NPV value ($ millions)

Economies of Deterministic Analysis with NPV if Uncertainty ENPV recognizing
scale factor, ! Analysis Uncertainty Ignored Uncertainty

1.0 50 25 1.75 0.87
0.95 100 75 21.51 14.27
0.90 175 125 51.75 37.18
0.85 200 175 84.56 61.18

4.6. Step 3: Flexibility Analysis

The flexible strategy in this example case was to deploy ca-
pacity in modules according to proven demand. The idea is
to build less capacity at the start—to avoid over commitment
and over capacity, and to add capacity modules according to
demonstrated demand. In this case, field experts indicated that
available standard module had a capacity of 25 tpd. Key to
this flexibility strategy, of course, is that the original design
enables easy capacity expansion. Providing this capability
typically comes at a cost. In the example, the analysis took
this cost to be that of tying in the first capacity addition to the
gas pipeline.
The analysis considered two kinds of capacity expansion:

1. Incremental capacity addition at the main production
site [the “no moveˮ option].

2. Placing additional modules at demand sites to lower
transportation costs [the “moveˮ option].

The operational question is: when should we make use
of the flexibility to expand? Given the uncertainty in the
evolution of demand, there is no a priori absolute answer to
this question. In practice, we want to expand capacity when
demand has grown sufficiently. Thus the operational issue
for the analysis is to determine, for each scenario, when
the growth meets the criteria to justify extra capacity. In
a Monte Carlo simulation running period by period using
Excel, we do this by examining the growth path in previous
periods. The analysis solves for the best criteria for triggering
expansion by exploring the possibilities, easily by simple
enumeration.
A decision rule incorporates the above to answer the op-

erational question of when to exercise flexibility. In Excel,
decision rules consist of logical IF/THEN/ELSE operators.
For the simple case of capacity expansion only at the primary
production site [the “nomoveˮ option], the decision rule was:

• IF “the difference between the observed aggregate de-
mand and current capacity at this site is higher than X%
of the capacity of the module in the previous period,”

• THEN “expand current capacity by adding a module,”
• ELSE “do nothing.”

The values that trigger action in the decision rules, such as
the X above, are the “threshold values.” For this case, enumer-
ation indicated that the threshold value X= 80% delivered the
best system performance.

Figure 5. Target curves for the optimum fixed design (! = 0.95→75
tpd) and for the flexible modular design [no move option].

4.6.1. Exploring Design Space with Enumeration
As different decision rules lead to different outcomes, the
question arises: what is the best decision rule for the cir-
cumstances? Taking advantage of the fact that spreadsheet
evaluations run quickly, we solved for the optimal decision
rule by comprehensive enumeration.
Table III details the elements of a flexible design vector

whose combination defines the space searched by enumera-
tion. It comprises both design variables describing the system
architecture, and threshold values of the decision rules. As the
second column indicates, the size of the enumeration space in-
creases dramatically with the complexity of the decision rules.
The fourth and fifth columns show the values investigated for
each variable and the incremental step size, which determines
the level of precision used in the enumeration. For the simpler
“nomoveˮ option, the total number of possible flexible design
configuration was 12 [ = 2×6]. The more complex “moveˮ
option entailed more threshold values and thus a total of 1,980
[ = 12×5×3×11] combinations.

4.6.2. Flexible Modular Design—No Move Option
Figure 5 illustrates a typical result of the flexibility anal-
ysis. It compares the performance under uncertainty of an
optimal fixed design and a flexible design that expands
capacity at the main production site [“no moveˮ option].
Specifically, Figure 5 displays the cumulative distribution of
the performance of each design (that is, the target curve). The
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Table III. Characterization of the Enumeration Space

Option Design variables Units Step Size Values Steps

No Move only Initial capacity Tons/day 25 0, 25 2
Capacity expansion threshold, at main production site % of modular design 20 0 to 100 6

Additions with Move Moving value threshold % of modular design 50 100 to 300 5
Coverage distance threshold km 100 200, 300, 400 3
Capacity expansion threshold, at demand site % of modular design 10 0 to 100 11

lower left side of each curve indicates the lowest level of per-
formance of each design as observed in the simulation, which
is at 0% on the vertical scale of the cumulative distribution.
The curve extends to the upper right, where it indicates the
maximum performance observed, at the 100% level of the
cumulative distribution. The curve for the fixed design has
an ENPV of $14.27 million if the system exhibits modest
economies of scale (! = 0.95), as indicated in Table II. No-
tice that this fixed design, that takes advantage of economies
of scale to build a large facility at the central site, has two
unattractive features:

• It can lead to large losses (NPV < – $25 million), this is
because the big plant can lose a lot if sufficient demand
does not materialize; and

• Has limited upside potential (NPV < $21 million), since
its fixed capacity cannot serve highest demands.

The flexible design does significantly better than the fixed
design, with the same assumed range of uncertainties:

• Its ENPV = $20.69M (see Table IV), that is nearly 45%
better than that of the fixed design [$20.69 million vs.
$14.27 million]!

• Moreover, the performance of the flexible design in this
case dominates stochastically that of the fixed design
(i.e., its cumulative or target curve is absolutely to the
right of that of the fixed design).

• The flexible design reduces exposure to downside risks:
the strategy of building small at first puts less investment
at risk and lowers maximum losses if demand is low.
In this particular example the flexible design strategy
reduces the maximum loss from about – $25 million to
no less than – $5 million.

• Similarly, the flexible design provides the ability to take
advantage of upside opportunities: it enables the easy
addition of capacity when demand soars and increases
the maximum gain, in this case from about $21 million
to nearly $38 million.

4.6.3. Flexible Modular Design—Move Option
The flexibility analysis for the “moveˮ strategy, which allows
flexibility both as to when and where to add capacity, is
similar to the previous example. However, this analysis had to
implement additional decision rules to explore this flexibility,
to address three questions: when should we build the modular
plant for the first time at distance, where should we build it,
and when should we expand it?

Figure 6. Target curves for the optimum fixed design (! = 0.95→75
tpd) and for the flexible modular designs.

The decision rule regarding the capacity expansion at a
distance was:

• IF “demand at each demand site reaches Y% of the mod-
ular design capacity in the previous period”,

• THEN “build a modular production plant at the demand
site”,

• ELSE “do nothing”.

Comprehensive enumeration determined that in this case
the optimal economical threshold value was Y = 100%.
The decision rule regarding the geographical location for

capacity expansion was:

• IF “the demand sites qualified for the first capacity
deployment in terms of timing are located beyond the
maximum distance D”,

• THEN “consider building the first modular production
facility at those sites”,

• ELSE “do nothing”.

Again, enumeration determined the best threshold distance
as D = 400Km.
The decision rule to build extra modular plants at any de-

mand site was:

• IF “unmet demand (i.e., the difference between the ob-
served demand and the current capacity at the site)
reaches Z% of the modular capacity”,

• THEN “deploy extra modular capacity”,
• ELSE “do nothing”.

Further enumeration found the optimal Z = 50%.
Figure 6 and Table IV show the additional advantages of

the flexibility to locate capacity away from the main site.
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Table IV. Improvement of Multi-Criteria Performance Metrics Due to Flexibility with no Learning (! = 0.95)

ENPV Value ($ millions) Improvement (%)

Criterion Optimum fixed design Flexible no move Flexible with move Flexible no move Flexible with move

ENPV 14.27 20.69 23.29 45 63
VaR10% 1.82 5.40 3.74 197 105
VaG90% 20.46 34.54 45.78 69 124

As must be expected, looser constraints on system design
increase maximum potential value. In this case, the ability
to distribute capacity across the region (and thus to reduce
logistical costs) further increases system ENPV, in this case
from $20.69 million to $23.29 million, and the maximum
NPV from about $38 million to about $60 million.
This flexibility and added value, however, complicates the

evaluation! In this case, the design with the flexibility to
move capacity away from the main site does not dominate
stochastically the design that fixes capacity there. Visually,
the target curve for the design with the move option crosses
the target curves for other designs. In this case, as often hap-
pens, designers may not want to choose the solution based
upon a single metric such as ENPV. Indeed, no one metric is
sufficient to characterize a general distribution. In this context
we need to consider multiple criteria of evaluation.
Table IV provides a multi-criteria display of the perfor-

mance of the fixed and flexible designs. It displays the average
ENPV value and two measures of the extreme values. In
terms of extremes, better practice generally focuses on some
threshold level of cumulative performance rather than on the
absolute maxima and minima values from the Monte Carlo
simulation. This is because those highest and lowest val-
ues, being very rare, can vary considerably between simula-
tions. The threshold values are quite stable, however. Standard
thresholds of value are VaR10%, the 10% Value at Risk, the
performance at the 10% cumulative probability or percentile,
and VaR10%, the 90% Value at Gain. Table IV compares the
performance of the fixed and two flexible designs in these
terms.

4.6.4. Effect of Learning
Learning increases the value of flexibility. Because it reduces
the cost of modules as more get implemented, it favors their
use and thus increases the value of flexibility. Figure 7 shows
how this occurs. It compares the target curves for the flexible
design “no moveˮ option at various levels of learning, from
none (LR = 0%) to 20%. The message is clear: the greater
the rate of learning, the more valuable the flexibility using
modules.

4.6.5. Multi-Criteria Decision-Making
Decision-makers can base their choice of preferred design
alternative on many criteria. Table V illustrates the situation.
It compares results for the optimum fixed and flexible designs
(with and without move), with modest economies of scale and

Figure 7. Target curves for flexible modular design [no move] in
terms of different learning rates.

learning rate (! = 0.95, LR = 10%). It reports the project
values using common economicmetrics for project evaluation
under uncertainty. In addition to the Expected Net Present
Value, these include measures of the shape of the target curve
in terms of the dispersion of the results: the 10% Value at
Risk, the 90% Value at Gain, and the Standard Distribution.
Many investors also pay great attention to the initial Capital
Expenditure of projects, when these are most risky. Table V
highlights in bold the best values for each criterion. As often
happens, different projects appear best according to different
criteria. Indeed, the fixed design has the lowest standard de-
viation and thus might be labeled most “robustˮ; this could
be considered a good thing, but here merely indicates that the
fixed design performs uniformly poorly, as it cannot take ad-
vantage of upside opportunities. In general, decision-makers
have to balance criteria. In this case, the flexible-move design
appears best.

4.7. Step 4: Sensitivity Analysis

The proper role of sensitivity analysis for a design under un-
certainty is to explore the robustness of the choice of design.
As Section 3.5 indicates, once we recognize that we cannot
accurately predict future demands on a system, we have also
acknowledged that we cannot define future performance pre-
cisely. The key question is: is the recommended design robust
to variability in parameter estimation? This is the focus of the
sensitivity analysis section. Since this paper proposes an ap-
proach to improved design, rather than a specific solution to a
particular issue, the following paragraphs focus on illustrating
the approach to sensitivity analysis for flexibility in design.
They do not try the justify the details of the particular design
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Table V. Multi-Criteria Decision-Making Table (! = 0.95, LR = 10%, figures in $ million)

Criterion Fixed design No move option Move option Value of flexibility Best design

ENPV 14.27 36.93 43.17 28.90 Move
VaR, 10% 1.82 10.82 11.06 9.24 Move
VaG, 90% 20.46 63.17 80.09 59.63 Move
STD 8.78 18.91 25.31 0.00 Fixed
Capex 60.44 27.50 27.50 32.94 Flexible

Figure 8. Value of flexibility with different economies of scale and
learning rates.

that emerged from the case study analysis, which depended on
the specific assumptions deemed appropriate by a company at
a given moment. The case study is used to illustrate the effects
of important parameters and tradeoffs.

4.7.1. Effect of Economies of Scale and Learning Rate on
Choice of Flexible Design
As the analysis stresses, the discount rate and intensities of
economies of scale and learning rate have an important effect
on the desirability of flexible designs. In the practical context
of this demonstration case, we could reasonably assume that
the proposed contractor knew its acceptable discount rate, so
the effect of this parameter was not investigated. Thus one
focus of the sensitivity analysis is on the joint effect of the
economies of scale and learning rate factors. Although expe-
rienced designers in a particular field can reasonably estimate
these factors, they cannot know them unambiguously.
The sensitivity analysis explored the joint effect of various

economies of scale and learning rate by repeating the analysis
for combinations of these parameters. Figure 8 displays the
results. It brings out two important results:

• As expected, lower economies of scale and greater learn-
ing rates increase the value of flexibility. Expressed an-
other way, high economies of scale favor larger fixed
designs.

• The value of flexibility in this example case ranged up
to $60 million, compared to the maximum ENPV of
$61.18 million for the fixed design under uncertainty.
Flexibility thus clearly offers significant potential that
demands exploration.

• In this example case, the flexible design strategy is valu-
able for all but the most extreme cases, that is, where the
economies of scale are particularly high and there is no
learning. For even modest learning rates and economies
of scale, the flexible modular design is valuable overall.
One may thus conclude that, in the demonstration case,
the modular flexible design is robust over a wide range
against variations in these parameters.

4.7.2. Sensitivity Analysis to Identify the Key Demand
Parameter
The most effective sensitivity analyses consider the joint ef-
fect of the variability of a parameter and their effects. This
contrasts with the approach often encountered in practice of
varying each parameter by a fixed percentage (such as +/–
10%). The reality is that some parameters are more uncertain
than others. Also, some parameters may not vary consider-
ably, yet have great effect – while others can vary consid-
erably but have little effect. The cost-effective approach to
sensitivity analysis then first estimates the plausible range of
the spread of these parameters (such as their standard devi-
ation if available) and then calculates the possible effect on
the outcomes. The sensitivity analysis then focuses on the
parameters with the greatest impact.
Figure 9 illustrates the first result of this approach. It shows

the calculated effect of probable ranges of values for the
parameters of the assumed demand projection, specifically of
its initial and final levels and of the rate of growth. It presents
the results in the form of a “Tornado” diagram, which stacks
the parameters with the most effect at the top, thus presenting
an image reminiscent of the cone of a tornado. For the exam-
ple case, this first stage of sensitivity analysis indicates that
the most sensitive assumption concerns the sharpness factor,
whose effect we then examined in detail.

4.7.3. Effect of Key Demand Parameter
Based upon the first stage of the sensitivity analysis that
highlighted the importance of the sharpness factor on the
evaluation, we examined its effect on the design evaluations
for combinations of economies of scale and learning rate. The
result was very similar to that of Figure 8: changes in the
sharpness factor shifted the lines up and down. Importantly,
however, they did not alter the fundamental conclusion: the
flexible modular provides the best value over the range of
likely combinations of reasonable economies of scale and
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Figure 9. Tornado diagram showing effects of demand parameters on the optimum NPV (fixed design, deterministic analysis, ! = 95%).

learning. In these cases, the flexible modular design is indeed
robust.

5. CONCLUDING DISCUSSION

This paper presents an innovative flexibility analysis as a
practical, effective procedure to improve the expected value
of large-scale, capital-intensive projects when there is market
uncertainty. Its novelty lies in its approach and scope. Its
approach develops an understanding of the drivers of the value
of flexibility, and thus builds acceptance among decision-
makers. The scope explicitly considers the combined effects
of uncertainty, economies of scale, learning, and geographic
distribution.
The proposed methodology is a “systems engineering

approach” suitable to the reality of design practice. It
differs from financially derived real options analysis using
arbitrage-enforced and risk-neutral valuation. Two reasons
drive this choice. Most importantly, many assumptions
crucial to the financial approach are inappropriate to the
context of systems engineering. Specifically, we cannot
assume path-independence for the different states of the
system, since managers do reconfigure systems over time.
Further, there are often no reasonable comparables or
markets for systems designs, so that crucial financial
concepts such as replicating portfolio and arbitrage-enforced
pricing do not hold. Secondly, since designers have so many
options they can exercise over time, it is not possible with
current computing power to solve for comprehensive optimal
solutions. Furthermore, it is likely that actual decision-makers
would follow their own decision rules, suitable for their time
and place. It is therefore necessary to be able to express and
replicate this reality in the economic evaluation process.
The approach differs from earlier versions of the systems

engineering approach to the analysis of flexibility in that it
deconstructs the analysis into its several parts. The idea is to
demonstrate the logic of why a flexible approach to design can
create value, to show how each of different forms of flexibility
add to this value, and to provide reasonable assurance that the
recommended design is robust to its assumptions. In short,
the approach does more than suggest a design solution and
assert its value; the idea is to provide the basis for a convincing

argument as to why and how the novel flexible approach to
design is appropriate, and thus a coherent rationale for why
decision-makers should consider adoption of flexible designs.
The paper demonstrates the approach through the analy-

sis of a case study concerning the development of an LNG
plant. Drawing on the then current realities of the situation
and the knowledge of our industrial partners, the analysis is
realistic for that time and place. It usefully demonstrates how
the proposed procedure works. More generally, it indicates
how modular design strategies, with the flexibility to deploy
capacity over both time and space, have the potential to add
significant value. The demonstration thus provides a model
for the analysis of LNG and similar production facilities else-
where.
It is possible to extend the proposed 4-step approach to a

range of possible sources of flexible design beyond modular-
ity. The essence of the proposed procedure is indeed to go
beyond defining a solution, by creating a logic and an intuitive
understanding of the situation, for the purpose of providing
persuasive arguments to justify the use of flexible designs as
possible improvements over conventional fixed designs based
on fixed and generally unrealistic requirements. Follow-on
studies on implementation will contribute to further validate
the proposed process.
The approach underlines the need for multi-criteria eval-

uations since no single metric can adequately describe the
distribution of performance of any design. Unless a design
stochastically dominates all others, decision-makers have to
define their preferred solutions by balancing average and
possible extreme performances along with other indications
of value and cost, such as initial Capex, and situationally
appropriate non-financial metrics. In a parallel application for
example, Cardin et al. [2013c] evaluated flexibility in emer-
gency services in terms of their expected time responsiveness
to incidents over their lifecycle.
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Nomenclature

aD , aU = translation parameter in deterministic and
stochastic demand models

! = economies of scale factor
Av = annual demand volatility, percent

bD , bU = sharpness parameter in deterministic and
stochastic demand models

B = slope of learning effect
CD
! ,CU

! = optimum capacity of a fixed design with
economies of scale !, tons per day, determin-
istic and with uncertainty

DD
0 , DU

0 = LNG demand in years 0, tons per day, deter-
ministic and with uncertainty

Gt = annual LNG demand growth rate
LR = learning rate, percent

MD
T ,MU

T = forecast limit of demand in year T, tons per
day, deterministic and with uncertainty

r = discount rate, percent
T = project lifetime/study period, year

U1, Ui = Capex required for building the first and the
i-th LNG modular plant, $ million

V D
! = optimum value of a fixed design under deter-

ministic and economies of scale !, NPV
VU
! = optimum value of a fixed design under uncer-

tainty and economies of scale !, ENPV
Δb = volatility of sharpness parameter, percent

ΔD0
,ΔMT

= volatility of realized demand in percent, in
years 0 and T

REFERENCES

H. Andersson, M. Christiansen, and K. Fagerholt, “Transportation
planning and inventory management in the LNG supply chain,”
in E. Bjørndal, M. Bjørndal, P.M. Pardalos, M. Rönnqvis (Ed-
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