Valuation of Financial Options

Outline

- Examined options basics
 - Rights, not obligations
 - Asymmetric payoffs (limited losses)
 - Value different from immediate payoff
 - Value increases with volatility of underlying asset, time to expiration
 - Current stock price and option strike price also affect value

- What is exact option value?
 - Why NPV does not work for options
 - Boundaries on option value
 - Replicating option returns
 - The Black-Scholes model
 - A general binomial model

- Goal: build background for understanding real options
The Problem of Pricing Financial Options

- Traditional NPV not applicable
 NPV requires two steps
 Estimation of cash flows
 Discounting to present using risk-adjusted rate from CAPM

Step 1: option cash-flows (payoffs) depend on stock price
Future stock price is uncertain
Could describe with probability distribution

Step 2: adjusted discount rate depends on risk of option
Option risk changes with stock price
Stock prices change continually and unpredictably
Cannot predict option risk over time
No single, risk-adjusted, discount rate applies

Why Call Option Risk Changes Unpredictably

- Payout becomes more certain with increased S
 Possibility of losing entire investment decreases
 Decreases volatility (risk)

Risk of option changes every time stock price changes
Stock price changes continually and unpredictably
Moving Toward Options Pricing

- Need a framework other than NPV for valuing options
 - Still want to account for time value of money and risk
 - Begin by identifying logical constraints on price

Narrowing the Scope: Boundaries on Price

- Some logical boundaries on the price of an American call

 \[
 \text{Price} \geq 0 \\
 \text{Otherwise buy option immediately}
 \]

 \[
 \text{Price} \leq S \\
 \text{Stock yields } S^* \\
 \text{Option yields } S^* - K \\
 \text{Option worth less than stock}
 \]

 \[
 \text{Price} \geq S - K \\
 \text{Or buy and exercise immediately}
 \]
Valuation By Comparison

- Identified several influences and boundaries of options value

- Still do not have concrete option valuation method

- One idea is to replicate options payoffs using other assets
 - If end payoffs are the same, then
 - The initial value of these assets and the option should be equal

- Key is to find replicating assets that can be valued directly

Breaking a Call Option into Separate Components

- If exercised, call option results in stock ownership
 - Option owner effectively controls shares of stock

- Payment for stock delayed until option is exercised
 - Delayed payments are essentially loans

- Call options are like buying stock with borrowed money

- Use this analogy to develop estimate of option value
A One-Period Example

- **Stock**
 - Current price = $100
 - Price at end of period either $80 or $125

- **One-period call option**
 - Strike price = $110

- **Assume funds can be borrowed at risk-free rate**
 - One-period risk-free rate = 10%

- **Identify conditions where end-of-period payoffs are equal**
 - Buying stock and borrowing money
 - Buying call options

- **Then, initial values should be equal**

Call Option Cost and Payoffs

- Pay C dollars to acquire option

- If S>K, call payoff = S - K

- If S<K, call payoff = 0

<table>
<thead>
<tr>
<th></th>
<th>Start (Stock = 100)</th>
<th>End (Stock = 80)</th>
<th>End (Stock = 125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy Call</td>
<td>- C</td>
<td>0</td>
<td>(125 - 110) = 15</td>
</tr>
<tr>
<td>Strike = 110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stock and Loan Cost and Payoffs

- Buy stock and borrow to have payoffs look like option
- If S>K, want stock and loan payment to net to positive return
 - Can develop ratio to equalize stock and loan payments to option returns
- If S<K, want stock and loan payment to net to zero

Stock and Loan Cost and Payoffs (2)

<table>
<thead>
<tr>
<th></th>
<th>Start (Stock = 100)</th>
<th>End (Stock = 80)</th>
<th>End (Stock = 125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy Stock</td>
<td>-100</td>
<td>80</td>
<td>125</td>
</tr>
<tr>
<td>Borrow Money</td>
<td>80/(1+r)</td>
<td>-80</td>
<td>-80</td>
</tr>
<tr>
<td>Net</td>
<td>-100 + 80/(1+r)</td>
<td>0</td>
<td>45</td>
</tr>
</tbody>
</table>
Comparing Costs and Payoffs

- If S>K, stock and borrowing returns more than call
 Ratio of returns in this case is 3:1

If S<K, returns are equal
Buying 3 calls should equalize payoffs

<table>
<thead>
<tr>
<th></th>
<th>Start (Stock = 100)</th>
<th>End (Stock = 80)</th>
<th>End (Stock = 125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy Call (Strike = 110)</td>
<td>- C</td>
<td>0</td>
<td>125 - 110 = 15</td>
</tr>
<tr>
<td></td>
<td>Start (Stock = 100)</td>
<td>End (Stock = 80)</td>
<td>End (Stock = 125)</td>
</tr>
<tr>
<td>Buy Stock and Borrow</td>
<td>-100 + 80/(1+r)</td>
<td>0</td>
<td>45</td>
</tr>
</tbody>
</table>

Equalizing Costs and Payoffs

- Equal payoffs suggest initial costs should be equal
 Otherwise could buy cheaper alternative and sell
 more expensive result would be instant profit

<table>
<thead>
<tr>
<th></th>
<th>Start (Stock = 100)</th>
<th>Start (Stock = 80)</th>
<th>End (Stock = 125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy 3 Calls Strike = 110</td>
<td>-3C</td>
<td>0</td>
<td>125 - 110 = 45</td>
</tr>
<tr>
<td></td>
<td>Start (Stock = 100)</td>
<td>Start (Stock = 80)</td>
<td>End (Stock = 125)</td>
</tr>
<tr>
<td>Buy Stock and Borrow</td>
<td>100 + 80/(1.1)</td>
<td>0</td>
<td>45</td>
</tr>
</tbody>
</table>

• 3C = -100 + 80/(1.1), therefore C = $9.09
One-Period Example Summary

- Call option payoff replicated using stock and borrowing
 - Cost of loan and price of stock are known
 - Allows value of option to be assessed

- Information needed to determine call value
 - Stock price
 - Strike price
 - Time (one-period)
 - Volatility of stock (range of final prices)
 - Interest rate also influenced option value

Options Pricing Models

- Concept of example important, must extend to be practical
 - Multiple periods
 - Dividends

- Present two options valuation frameworks

- Black-Scholes
 - Reasonably compact formula
 - Prices European calls only (assumes exercise can occur only at expiration)
 - Can be modified to include dividends

- A more general binomial model
 - Less limited in scope, possibly more difficult to apply
 - Considers exercise at any time and dividends
The Black-Scholes Options Pricing Formula

- The value of a European call on a non-dividend paying stock

\[C = S \times N(d_1) - K \times e^{-rt} \times N(d_2) \]

- \(S \) = current stock price
- \(K \) = striking price
- \(r \) = risk-free rate of interest
- \(t \) = time to expiration
- \(\sigma \) = standard deviation of returns on stock
- \(N(x) \) = standard cumulative normal distribution

\[
d_1 = \frac{\ln \left(\frac{S}{K \times e^{-rt}} \right)}{\sigma \sqrt{t}} + (\sigma \sqrt{t}) \]

\[
d_2 = d_1 - (\sigma \sqrt{t}) \]

The Black-Scholes Options Pricing Formula (2)

- Note similarities to previous examples
 - Same factors required
 - Volatility replaces stock outcomes from one-period example
 - Resembles replicating portfolio (buy stock and borrow)

- Derivation complicated, not the focus here
Using Black-Scholes Model

- Essentially a substitution and solve formula
 - Programmed into most financial calculators
 - Ubiquitous to Wall Street community

- S, K, t are directly stated terms of option

- r is risk-free rate of currency named in strike price

- Volatility of stock must be estimated from historical data

A Relationship Between Calls and Puts

- Put-Call parity
 - Put option value can be determined indirectly using Black-Scholes
 - For European options, on non-dividend paying stocks
 \[C = P + S - Ke^{-rt} \]
Including Dividends in Black-Scholes

- Two adjustment methods

- Assumption of constant dividend yield
 Replace S in formula with $S'(1-d)^n$
 d = constant dividend yield
 n = number of dividend periods

- Estimation of present value of dividends
 Replace S in formula with $S-D$
 D = present value of dividends

- Put-call parity becomes either
 \[
 C = P + S'(1-d)^n - Ke^{-rt}
 \]
 \[
 C = P + S - D - Ke^{-rt}
 \]

Limitations to Black-Scholes

- Black-Scholes values European options
 Most traded options are American type...
 As are most real options

- American options can be exercised at any time
 In general, early exercise is not optimal (option more valuable than payoff)
 Sometimes can be an extremely valuable feature

 Overall, a more general approach is needed
Example of Early Exercise Being Valuable

- Company unexpectedly decides to pay large dividend
 - Option lasts well beyond payment date
 - Stock will be worth much less after dividend payment, so will option
 - If option is in the money, would make sense to exercise just prior to pay-out

- Looking ahead to real options
 - Opportunity cost acts like dividends
 - Early exercise possible and likely

Origin of Black-Scholes Model

- One-period example
 - Compared end-of-period option value to stock and borrowing portfolio value
 - Equated beginning-of-period option value to initial portfolio value

- Black-Scholes model
 - Assumes many small periods
 - Represents limit as time period approaches zero
 - Calculates call option value based on statistically described stock movements
 - Assumes early exercise is not possible

- Needed for general model
 - Ability to decide to hold or exercise, at beginning of each period
A General Binomial Model for Options

- One-period call option example
 - Compared option value to portfolio of stock and borrowing
 - If stock price increased, call option had positive value
 - If stock price decreased, call option was worthless

- In reality, stock price continues to change over many periods
 \[S \longrightarrow \begin{array}{l}
 S_u \\
 S_d \\
 S_{uu} \\
 S_{dd} \\
 S_{ud} \\
 \end{array} \]
 \[u = \text{up} \quad d = \text{down} \]

- Option value changes each time stock price changes
 \[C \longrightarrow \begin{array}{l}
 C_u \\
 C_d \\
 C_{uu} \\
 C_{dd} \\
 C_{ud} \\
 \end{array} \]

General Binomial Model Procedure

- Assumes many periods
- Works backward from date of expiration
- For each period, applies one-period valuation methodology
- At each node, compares
 - Value of option
 - Immediate exercise payoff
- Optimal policy determined for each period and stock price
 - Hold option for another period
 - Exercise immediately
General Binomial Model Results
(Single Period)

- Value of call if held for single period

\[C = \frac{p \cdot Cu + (1-p) \cdot Cd}{1+r} \]

- where, \(p \) acts as a probability
- \(Cu \) and \(Cd \) determined by stock volatility

- Value of option is maximum of
 - Immediate exercise
 - Holding for another period
 - Zero

\[C = \max\{S-K, \frac{p \cdot Cu + (1-p) \cdot Cd}{1+r}, 0\} \]

General Binomial Model Results
(Multi-period)

- Many periods are treated like a decision tree

 - Period 0
 - Period 1
 - Period 2
 - Period 3

 \[C \]

- Work backward from last to first period to value \(C \)

- Apply one-period methodology at each node
 - example:
 \[Cuu = \max\{Suu-K, \frac{p \cdot Cuuu + (1-p) \cdot Cuud}{1+r}, 0\} \]
Comments on Binomial Model

- Binomial model is a recursive technique
 - Start with end-period values and work backward to present
 - Tedious for anything other than short examples
 - Can be automated in computer programs

- Note similarity to NPV
 - Estimate cash-flows (end-of-period option value)
 - Discount to present (using risk-free rate)

\[C = \frac{p \times Cu + (1-p) \times Cd}{(1+r)} \]

- Why does this work?
 - Started out on premise that NPV does not work for options
 - Model adjusts cash-flows such that risk-free rate is proper discount rate
 - Probability p is the mechanism for adjusting the cash-flows

Comparing Traditional NPV to Options Valuation

- Traditional NPV procedure
 - Estimate cash flows
 - Discount at risk-adjusted rate from CAPM

- Traditional NPV does not work for options

- Option valuation handles risk-adjustment differently
 - Estimate cash-flows and adjust for risk
 - Discount at risk-free rate

- Options procedure also known as risk neutral valuation
 - Critical concept of derivatives field
Summary

- Options cannot be valued using NPV
 - Risk constantly changes
 - Proper risk-adjusted discount rate cannot be determined

- Options valuation procedures use risk-neutral valuation
 - Adjust cash flows and apply risk-free rate
 - Versus adjust discount rate and apply to cash-flows

- Black-Scholes is compact, but limited
 - Values European calls
 - Put-call parity works for valuing puts

- Binomial model more general
 - A recursive technique
 - More complicated, but can be automated

Appendix: Observed Option Price Influences

- Combined list of influences
 - Underlying price (S)
 - Strike price (K)
 - Time to expiration (t)
 - Risk-free rate of interest (r)
 - Range (volatility) of stock price changes
 - Dividends (D)
 - American vs European options
 (ability to exercise early)
Appendix: Impact of Individual Factors on Option Value

<table>
<thead>
<tr>
<th>Factor/Option Type</th>
<th>American Call</th>
<th>American Put</th>
<th>European Call</th>
<th>European Put</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying Price</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Striking Price</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Time to Expiration</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Volatility of Underlying</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Risk-free rate of interest</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Dividends</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Appendix: Rationale Behind Influence Factors Table

- **Stock price**
 - The greater the stock price (S) relative to striking price (K), the more likely a call (put) will be in (out of) the money.

- **Striking price**
 - The greater the striking price (K) relative to stock price (S), the less likely a call (put) will be in (out of) the money.

- **Time to expiration**
 - For American options, an option with a longer term to expiration is the same as an option with a shorter term, plus additional time.
 - European options cannot be exercised until the expiration date, so the extra time could cause harm relative to the shorter term option.
Appendix: Rationale Behind Influence Factors Table (2)

- **Volatility of underlying stock**
 - Since options have a zero downside and a positive upside, increased volatility increases the likelihood of finishing in the money.

- **Risk-free rate**
 - The striking price is paid or received in the future, and its present value is reduced by increased interest rates.
 - For calls, the striking price is paid in the future.
 - For puts, the striking price is received in the future

- **Dividends**: Stock prices adjust downward for dividend payments. This reduces (increases) the likelihood a call (put) will finish in the money.