Real Options II

Introduction

- Developed an introduction to real options
 - Relation to financial options
 - Generic forms
 - Comparison of valuation in practice

- Now,
 - Value of flexibility (examining projects with compound real options)
 - A final look at the real options and decision analysis debate
 - Pointers to other course and materials
Flexibility

- **Flexible systems**
 - Allow owner to adapt operating conditions
 - Trigger for action is some internal or external stimulus
- **For example, flexible manufacturing systems can**
 - Allow fast product change-overs
 - Accept a variety of raw materials
 - Can efficiently process a wide range of batch sizes
- **Flexibility often costs extra to acquire**
 - Equipment might require special configurations
 - Production management more complex
- **But, flexibility can reduce total operating costs**
 - Costs less to adapt to variability and change
 - Allows better use of inputs or production of outputs

An Options Perspective of Flexibility

- **Flexible systems enable advantageous actions**
 - Resembles a series of options
 - Can continually respond to changing conditions
- **Demonstrate value using case of a flexible burner**
 - Based on Kulatilaka and Marcus paper
- **Electric power turbines can be powered by**
 - Gas burners
 - Oil burner
 - Flexible burner (accepts either oil or gas)
- **Fixed technologies cost less to acquire**
- **When might flexible systems be valuable?**
Starting Assumptions for Dual-Fuel Burner Example

- Examine 10 years of operation
- Discount cash flows at 10%
- Price of gas remains fixed at $1 per energy unit
- Price of oil increases over time
 - At present oil costs $0.75 per energy unit
 - Price increases by 5% per year
- Installation in Year 0; Operations in Year 1
- Revenues are independent of technology

What is the NPV for each burner?

Case 1: Oil and Gas Prices are Known with Certainty

- Oil burner cheaper to operate until Year 6

<table>
<thead>
<tr>
<th>Price</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.75</td>
<td>0</td>
</tr>
<tr>
<td>$0.85</td>
<td>5</td>
</tr>
<tr>
<td>$0.95</td>
<td>10</td>
</tr>
<tr>
<td>$1.05</td>
<td></td>
</tr>
<tr>
<td>$1.15</td>
<td></td>
</tr>
<tr>
<td>$1.25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.75</td>
<td>0</td>
</tr>
<tr>
<td>$0.85</td>
<td>5</td>
</tr>
<tr>
<td>$0.95</td>
<td>10</td>
</tr>
<tr>
<td>$1.05</td>
<td></td>
</tr>
<tr>
<td>$1.15</td>
<td></td>
</tr>
<tr>
<td>$1.25</td>
<td></td>
</tr>
</tbody>
</table>

Oil and Gas Prices

- Oil
- Gas
Cash Flows Under Certainty

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Plant</td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>1.16</td>
<td>1.21</td>
<td>1.27</td>
<td>1.34</td>
<td>1.40</td>
<td>1.47</td>
<td>1.55</td>
<td>1.63</td>
<td>1.71</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>2.50</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>PV Net</td>
<td>-2.50</td>
<td>0.15</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
<td>0.25</td>
<td>0.27</td>
<td>0.28</td>
<td>0.29</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Cash Flow NPV</td>
<td></td>
</tr>
<tr>
<td>Oil Plant</td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>1.16</td>
<td>1.21</td>
<td>1.27</td>
<td>1.34</td>
<td>1.40</td>
<td>1.47</td>
<td>1.55</td>
<td>1.63</td>
<td>1.71</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>2.50</td>
<td>0.79</td>
<td>0.83</td>
<td>0.87</td>
<td>0.91</td>
<td>0.96</td>
<td>1.01</td>
<td>1.06</td>
<td>1.11</td>
<td>1.16</td>
<td>1.22</td>
</tr>
<tr>
<td>PV Net</td>
<td>-2.50</td>
<td>0.34</td>
<td>0.32</td>
<td>0.30</td>
<td>0.29</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>Cash Flow NPV</td>
<td></td>
<td>0.24</td>
</tr>
<tr>
<td>Flexible Plant</td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>1.16</td>
<td>1.21</td>
<td>1.27</td>
<td>1.34</td>
<td>1.40</td>
<td>1.47</td>
<td>1.55</td>
<td>1.63</td>
<td>1.71</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>3.00</td>
<td>0.79</td>
<td>0.83</td>
<td>0.87</td>
<td>0.91</td>
<td>0.96</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>PV Net</td>
<td>-3.00</td>
<td>0.34</td>
<td>0.32</td>
<td>0.30</td>
<td>0.29</td>
<td>0.27</td>
<td>0.26</td>
<td>0.28</td>
<td>0.29</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Cash Flow NPV</td>
<td></td>
<td>-0.03</td>
</tr>
</tbody>
</table>

Results of Certainty Case

- **Rank of technologies**
 - Oil
 - Flexible
 - Gas

- **Oil burner captures early cost advantages over gas**
 - Time value of money means early gains more significant than later losses

- **Oil burner also better than flexible**
 - Both capture cost advantages early-on
 - Flexible advantageously switches to gas in Year 6
 - Extra costs of acquiring flexible overshadow later gains

- **Critical assumption:** input prices are predictable
Case 2: Uncertainty in Oil Prices

What if oil could follow one of three price paths?

<table>
<thead>
<tr>
<th>Oil Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

Price

$0.20 $1.00 $1.40 $1.80

Time

0 5 10

Cash Flows with Uncertainty

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Plant Revenue</td>
<td>1.16</td>
<td>1.21</td>
<td>1.27</td>
<td>1.34</td>
<td>1.40</td>
<td>1.47</td>
<td>1.55</td>
<td>1.63</td>
<td>1.71</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Cost (High) p=0.3</td>
<td>2.50</td>
<td>1.18</td>
<td>1.24</td>
<td>1.30</td>
<td>1.37</td>
<td>1.43</td>
<td>1.51</td>
<td>1.58</td>
<td>1.66</td>
<td>1.74</td>
<td>1.83</td>
</tr>
<tr>
<td>Cost (Medium) p=0.4</td>
<td>2.50</td>
<td>0.79</td>
<td>0.83</td>
<td>0.87</td>
<td>0.91</td>
<td>0.96</td>
<td>1.01</td>
<td>1.06</td>
<td>1.11</td>
<td>1.17</td>
<td>1.23</td>
</tr>
<tr>
<td>Cost (Low) p=0.3</td>
<td>2.50</td>
<td>0.39</td>
<td>0.41</td>
<td>0.43</td>
<td>0.45</td>
<td>0.47</td>
<td>0.50</td>
<td>0.52</td>
<td>0.55</td>
<td>0.58</td>
<td>0.61</td>
</tr>
<tr>
<td>Cost (Avg) p=0.3</td>
<td>2.50</td>
<td>0.79</td>
<td>0.83</td>
<td>0.87</td>
<td>0.91</td>
<td>0.96</td>
<td>1.00</td>
<td>1.05</td>
<td>1.11</td>
<td>1.16</td>
<td>1.22</td>
</tr>
<tr>
<td>PV Net Cash Flow</td>
<td>2.50</td>
<td>0.54</td>
<td>0.52</td>
<td>0.30</td>
<td>0.29</td>
<td>0.26</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>PV Net Cash Flow Flex Plant</td>
<td>2.50</td>
<td>0.54</td>
<td>0.52</td>
<td>0.30</td>
<td>0.29</td>
<td>0.26</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.24</td>
<td>0.24</td>
</tr>
</tbody>
</table>

NPV

<table>
<thead>
<tr>
<th>NPV</th>
<th>0.24</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Engineering Systems Analysis for Design
Massachusetts Institute of Technology
Richard de Neufville, Joel Clark, and Frank R. Field
Real Options 2 © Slide 9 of 20
Results of Uncertainty Case

- Rank of technologies
 - Flexible
 - Oil
 - Gas (same NPV as before since gas price remains fixed)

- Flexible technology enabled beneficial switching
 - For high oil price case, do better than oil burner
 - For high gas prices, do better than gas burner
 - Benefits accrue early on when uncertainty in prices is considered
 - Operating cost savings outweigh extra acquisition costs

- Input price uncertainty increased value of flexibility
 - Option value driven by cost of inputs
 - Uncertainty in prices represents volatility

General Point of Flexibility Case

- Pursue flexible strategies when uncertainty is high
- Focus when uncertainty is low
- Mis-match of flexibility to uncertainty environment leads to
 - Waste of flexibility
 - Exposure to risk

<table>
<thead>
<tr>
<th>High Uncertainty</th>
<th>Flexible Strategy Appropriate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed to Risk</td>
<td>Focused Strategy Appropriate</td>
</tr>
<tr>
<td>Low Uncertainty</td>
<td>Wasteful Flexibility</td>
</tr>
<tr>
<td>Rigid</td>
<td>Flexible</td>
</tr>
<tr>
<td>Response</td>
<td></td>
</tr>
</tbody>
</table>
Extending the Flexibility Case

- Uncertainty in oil prices treated by 3 price paths
- Flexible technology switched modes once, if at all

\[
\begin{array}{c}
O \quad \text{Ou} \\
Od \quad \text{Oud} \quad \text{Ouu} \\
\text{Odd} \\
\end{array}
\]

- In reality, oil price continually moves up and down
- Might repeatedly switch between oil and gas
- Modeling using tables rapidly becomes unwieldy

Estimating the Value of Flexibility in Practice

- Because problem involves a series of options
 - Can be difficult to evaluate using simple tables or decision trees
 - Black-Scholes does not apply either (multiple, dependent options)

- Typically requires computerized simulation
 - Based on binomial technique
 - Structurally similar to decision trees
 - Draws upon dynamic programming discipline

- Dual-fuel case was later extended using simulation
A Few Final Remarks on Real Option Valuation

- Conditions when financial models work well
 - One or a few uncertainty variables (underlyings)
 - Underlyings have an established market price history

- Conditions when decision analysis works well
 - Likelihood and timing of critical uncertainties and decisions understood
 - Information sources more focused on individual project
 - Variables without an established price history are important

- Real options approaches can be more compact
 - Decision trees rapidly become bushy
 - Simulation techniques are rooted in operations research

- Significant value in the mind-set
 - Approximate values can be a vast improvement

Points to Keep in Mind When Selecting a Framework

- Options theory concerned with pricing based on risk & return

- Decision analysis concerned with strategy development

- Must decide on needs
 - Valuation according to strict finance perspective
 - Setting guidelines for strategic planning

- Should consider level of required effort and ease of use

- Beware of false sense of precision
If You Want to Pursue this Topic Further...

Courses
- Basic finance theory: 15.401 and 15.402
- Options: 15.437
- Corporate finance: 15.434
- Decision analysis: 15.065
- Others in operations research and at Sloan related to simulation

References
- Real Options, Lenos Trigeorgis, MIT Press 1996
- Real Options in Capital Investment, Trigeorgis, ed Praeger, 1995
- Real Options and Investment under Uncertainty, Schwartz and Trigeorgis, eds, MIT Press, 2001
- Investment Under Uncertainty, Dixit and Pindyck, Princeton U. Press, 1994
- Journal of the Financial Management Association, 22(3), Autumn 1993 (Special Section on in Real Options …)
Conclusions:
What We Hope You Learned

- Project options can be major sources of value
- Value of options depends on several factors
- Finance models and decision analysis are valuation bases
- You should be aware of merits and limitations of each
- Most practical valuation framework depends on situation

Conclusions
You Can Add Value To Projects By:

- Recognizing the value of options
- Looking for opportunities to build options into project when appropriate
- Doing the valuation (do not blindly justify efforts as "strategic")