Motivation for Options: Valuation of Flexibility in Systems Design

Outline of Options Section

- Motivation and Basic Concepts
 - Need to value flexibility
 - Traditional Methods inadequate for Valuing Flexibility
 - Concepts of Options: Financial and Real

- Valuation of Options
 - Decision Analysis vs. Option Theory
 - Black-Scholes and Binomial

- Practical Analysis of Real Options
 - Alternative Approaches
 - Merck, Kodak, Hybrid (Neely)

- Extensions and Examples
Outline of Motivation

- Need to Value Flexibility
 - Flexibility adds value
 - When does added value justify the cost?
- Traditional Methods Insufficient
 - Net Present Value of Project is Inadequate
 - Example: Project Risk of Research and Development
 - Decision Analysis May be Impractical
 - Example: Market Risk of Flexible Plant
- Options Analysis Indicates Solution
 - Basic Types of Options: Calls and Puts
 - Applications to Systems Design: Real Options

Flexibility Adds Value

- Flexible systems
 - Allow owner to adapt operating conditions
- Flexibility can reduce total operating costs
 - Costs less to adapt to variability and change
- Allows advantageous use of inputs or production of outputs
- Example: flexible manufacturing systems
 - Allow fast product change-overs
 - Accept a variety of raw materials
 - Can efficiently process a wide range of batch sizes
Flexibility Costs

- **Money**
 - Equipment might require special configurations
 - Extra Space for Expansion

- **Complexity**
 - Production or management systems more complex

- **Time**
 - Design and Planning Efforts take time

Central Design Issue

- **What Flexibility should we incorporate in System?**
 - The question is in effect: What elements of flexibility are more valuable than their cost?

- **How do we value flexibility?**
Traditional Methods are Insufficient

- Net Present Value is Inadequate
 - Assumes a single cash flow, and misses flexibility
- Decision Analysis may be Impractical
 - Analysis too complicated
 - Also, inadequate basis for Choosing discount rate
- The need for a better Method is the Motivation for Options Analysis
- Options Analysis is a method for valuing flexibility
 - Recent development subject of Nobel Prize
 - Now being introduced into engineering systems design

Net Present Value is Inadequate

- Example: Project Risk of Research and Development
- Decisions not Fixed at Start of Project
- Projects often have Built-in decision points
 - Do we move from research into development?
 - When do we launch product?
- Choices are made after Observation of Results so far
- Standard NPV however unrealistically assumes
 - a single cash flow
 - NPV of average situation = Expected NPV of project
Example: Project Risk of Research and Development

- Start R&D project for $100
- $1100 more will be required to complete development
 - Must decide whether or not to continue after observing initial results
 - Commercial feasibility determined by initial R&D results
 - Plan to sell (license) technology to highest bidder
- Revenue estimate
 - 50% chance to sell technology for $2000
 - 50% chance to sell for $100
- Assume constant 10% discount rate applies

- Fund project?

Traditional NPV Valuation of R&D

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Cost</td>
<td>(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development</td>
<td></td>
<td>(1100)</td>
<td></td>
</tr>
<tr>
<td>License Revenues</td>
<td>0.5*2000</td>
<td>0.5*100</td>
<td></td>
</tr>
<tr>
<td>Present Value</td>
<td>(100)</td>
<td>(1000)</td>
<td>868</td>
</tr>
</tbody>
</table>
Traditional NPV Valuation of R&D (con’t)

- \(NPV = -232 \)
- Project should be rejected

Flexibility Perspective of R&D

- Develop only if $2000 license is expected

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Cost</td>
<td>(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development</td>
<td>0.5*(1100)</td>
<td>0.5*2000</td>
<td>0.5* 0</td>
</tr>
<tr>
<td>License Revenues</td>
<td></td>
<td>0.5*2000</td>
<td>0.5* 0</td>
</tr>
<tr>
<td>Present Value</td>
<td>(100)</td>
<td>(500)</td>
<td>826</td>
</tr>
</tbody>
</table>
Flexibility Perspective on R&D (cont’)

- **NPV = +226**
- **Should accept project**

![Decision Tree Diagram]

Lessons from Example with Project Risk

- **Ability to abandon project has significant value**
 - Limits downside
 - Continue only if advantageous
- **Standard NPV misses option value completely**
 - Fails to consider range of possible outcomes
- **Standard NPV distorts value when there is risk**
 - Assumes that: NPV with expected values = expected NPV
 - However: Consequences of scenarios have asymmetries
 - Example, production costs often not linear with volume
- **Decision analysis has the advantage of recognizing value of flexibility**
Decision Analysis May be Impractical

- **Analysis may be too complicated**
 - Situation may change too often so that analysis too confused
 - Example: Prices for Basic Resources fluctuate rapidly up and down

- **Inadequate basis for Choosing discount rate**
 - When nature of risk constantly changing
 - This implies that discount rate should be changing too
 - No single discount rate would adequately cover situation
 - See Presentation on Valuation for details

Example: Market Risk of Production

- **Case of Flexible Burner on Power Plant**

- **Turbines for electric power generation can be powered by**
 - Gas burners
 - Oil burner
 - Flexible burner (accepts either oil or gas)

- **Fixed technologies (gas or oil) cost less to acquire than more complex flexible burner**

- **Under what conditions might flexible systems be valuable?**
Specifics of Flexible Burner Example

- Based on Kulatilaka and Marcus paper

- Discount cash flows at 10%
- Price of gas remains fixed at $1 per energy unit
- Price of oil increases over time
 - At present oil costs $0.75 per energy unit
 - Price increases by 5% per year
- Installation occurs in Year 0
- Operations start in Year 1
- Revenues are independent of technology
- What is the NPV for each burner?

Base Case: Oil and Gas Prices assumed Known with Certainty

- Oil burner cheaper to operate until Year 6

<table>
<thead>
<tr>
<th>Price</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.75</td>
<td>0</td>
</tr>
<tr>
<td>$0.85</td>
<td>5</td>
</tr>
<tr>
<td>$0.95</td>
<td>10</td>
</tr>
<tr>
<td>$1.05</td>
<td></td>
</tr>
<tr>
<td>$1.15</td>
<td></td>
</tr>
<tr>
<td>$1.25</td>
<td></td>
</tr>
</tbody>
</table>

Base Case Prices:
- Oil
- Gas
Cash Flows Under Certainty

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Plant</td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>1.16</td>
<td>1.21</td>
<td>1.27</td>
<td>1.34</td>
<td>1.40</td>
<td>1.47</td>
<td>1.55</td>
<td>1.63</td>
<td>1.71</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>2.50</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>PV Net</td>
<td>-2.50</td>
<td>0.15</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
<td>0.25</td>
<td>0.27</td>
<td>0.28</td>
<td>0.29</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>NPV</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>Oil Plant</td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>1.16</td>
<td>1.21</td>
<td>1.27</td>
<td>1.34</td>
<td>1.40</td>
<td>1.47</td>
<td>1.55</td>
<td>1.63</td>
<td>1.71</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>2.50</td>
<td>0.79</td>
<td>0.83</td>
<td>0.87</td>
<td>0.91</td>
<td>0.96</td>
<td>1.01</td>
<td>1.06</td>
<td>1.11</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>PV Net</td>
<td>-2.50</td>
<td>0.34</td>
<td>0.32</td>
<td>0.30</td>
<td>0.29</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>NPV</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Flexible Plant</td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>3.00</td>
<td>1.61</td>
<td>1.27</td>
<td>1.34</td>
<td>1.40</td>
<td>1.47</td>
<td>1.55</td>
<td>1.63</td>
<td>1.71</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>3.00</td>
<td>0.79</td>
<td>0.83</td>
<td>0.87</td>
<td>0.91</td>
<td>0.96</td>
<td>1.01</td>
<td>1.06</td>
<td>1.11</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>PV Net</td>
<td>-3.00</td>
<td>0.34</td>
<td>0.32</td>
<td>0.30</td>
<td>0.29</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>NPV</td>
<td>-0.03</td>
<td></td>
</tr>
</tbody>
</table>

Results of Certainty Case

- Rank of technologies
 - Oil -- Flexible -- Gas

- Oil burner captures early cost advantages over gas
 Time value of money means early gains more significant than later losses

- Oil burner also better than flexible
 Both capture cost advantages early-on
 Flexible advantageously switches to gas in Year 6
 Additional costs of acquiring flexible overshadow later gains

- Critical assumption: input prices are predictable
Realistic Case: Market Uncertainty in Oil Prices

- What if oil could follow one of three price paths?

![Graph showing oil prices over time with three scenarios: High, Medium, Low.]

Cash Flows with Uncertainty

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Plant Revenue</td>
<td>1.16</td>
<td>1.21</td>
<td>1.27</td>
<td>1.34</td>
<td>1.40</td>
<td>1.47</td>
<td>1.55</td>
<td>1.63</td>
<td>1.71</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Cost (High) p=0.3</td>
<td>2.50</td>
<td>1.18</td>
<td>1.24</td>
<td>1.30</td>
<td>1.37</td>
<td>1.43</td>
<td>1.51</td>
<td>1.58</td>
<td>1.66</td>
<td>1.74</td>
<td>1.83</td>
</tr>
<tr>
<td>Cost (Medium) p=0.4</td>
<td>2.50</td>
<td>0.79</td>
<td>0.83</td>
<td>0.87</td>
<td>0.91</td>
<td>0.96</td>
<td>1.01</td>
<td>1.06</td>
<td>1.11</td>
<td>1.17</td>
<td>1.23</td>
</tr>
<tr>
<td>Cost (Low) p=0.3</td>
<td>2.50</td>
<td>0.39</td>
<td>0.41</td>
<td>0.43</td>
<td>0.45</td>
<td>0.47</td>
<td>0.50</td>
<td>0.52</td>
<td>0.55</td>
<td>0.58</td>
<td>0.61</td>
</tr>
<tr>
<td>Cost (Avg.)</td>
<td>2.50</td>
<td>0.79</td>
<td>0.83</td>
<td>0.87</td>
<td>0.91</td>
<td>0.96</td>
<td>1.00</td>
<td>1.05</td>
<td>1.11</td>
<td>1.16</td>
<td>1.22</td>
</tr>
<tr>
<td>PV Net Cash Flow NPV</td>
<td>-2.50</td>
<td>0.34</td>
<td>0.32</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>Flexible Plant Revenue</td>
<td>1.16</td>
<td>1.21</td>
<td>1.27</td>
<td>1.34</td>
<td>1.40</td>
<td>1.47</td>
<td>1.55</td>
<td>1.63</td>
<td>1.71</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Cost (High) p=0.3</td>
<td>3.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Cost (Medium) p=0.4</td>
<td>3.00</td>
<td>0.79</td>
<td>0.83</td>
<td>0.87</td>
<td>0.91</td>
<td>0.96</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Cost (Low) p=0.3</td>
<td>3.00</td>
<td>0.39</td>
<td>0.41</td>
<td>0.43</td>
<td>0.45</td>
<td>0.47</td>
<td>0.50</td>
<td>0.52</td>
<td>0.55</td>
<td>0.58</td>
<td>0.61</td>
</tr>
<tr>
<td>Cost (Avg.)</td>
<td>3.00</td>
<td>0.73</td>
<td>0.75</td>
<td>0.78</td>
<td>0.80</td>
<td>0.83</td>
<td>0.85</td>
<td>0.86</td>
<td>0.86</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td>PV Net Cash Flow NPV</td>
<td>-3.00</td>
<td>0.39</td>
<td>0.38</td>
<td>0.37</td>
<td>0.37</td>
<td>0.36</td>
<td>0.35</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.35</td>
</tr>
</tbody>
</table>

NPV 0.24 0.63
Results of Uncertainty Case

- Rank of technologies
 - Flexible -- Oil -- Gas

- Flexible technology enabled advantageous switching
 - For high oil price case, do better than oil burner
 - For high gas prices, do better than gas burner
 - Benefits accrue early on when uncertainty in prices is considered
 - Operating cost savings outweigh additional acquisition costs

Lessons from Example of Market Risk

- Real Situation Vastly more complicated
 - Prices Change Rapidly
 - They may go up and down in many pathways
 - The switch between fuels can be exercised often

- Decision Analysis can be Impractical
 - Simple Example Situation Already Difficult

- Example Analysis unrealistically assumed a fixed Discount Rate, But
 - Discount rate should reflect volatility of prices
 - As risk changes, so should discount rate
 - Cannot change discount rate in decision analysis

- Another Method Required!!!
“Options” Define Value of Flexibility

- An Option is a formal way of defining flexibility
- Options valuation well developed for financial markets
- Emerging field of real options applies theory to real projects
 - Future decisions have features similar to financial options
 - Financial options valuation frameworks can be extended to project flexibilities
- Real options correct deficiencies in NPV & decision analysis
 - Will detail these deficiencies shortly
 - Will also consider potential drawbacks to real options

What is an Option?

- A right, but not an obligation...
 - Asymmetric returns
 - Exercise only if advantageous
 - Acquired at some cost

- to take some action...
 - Often buy or sell something

- now, or in the future...
 - Usually limited timeframe
 - Option expires after time limit

- for a pre-determined price.
 - Price of action separate from option acquisition cost
 - Can be compared to instantaneous benefit of action
Example Financial Option

- Example: A Option to buy 100 shares of ATT at 60 through January
- Option allows, does not force owner to buy
- The right is to buy shares at a specified price
- The right is for a specific time (through January)
- Purchase price is set in advance (at $60)

- Note implications:
 Owner of Option Likely to exercise right to buy stock if it trades above $60 (owner then makes profit on difference between current price and $60)
 Owner not required to exercise losses are limited

Example Real Option

- Example: You have a spare tire in your car
- You can do something with it, but do not have to
- The right is to change the tire
- The right in this case has unlimited time
- The “cost” of exercising the option is the effort of changing the tire

- Note Similarity to Financial Option
 - You will change tire only if you need to
 - You do not have to do a thing about it
Financial Options Basics

- Focus on stock options because this is where theory developed
- Stock Options
 - Stock options are tradable assets (See Financial Pages)
 - Sold through exchanges similar to stock markets
 - Options on other assets (e.g. currencies) are similar
- Many Types of Stock Options
- All options have similar basic features
 - Option provides right to buy or sell stock
 - Time period during which option can be exercised is limited
 - Strike price at which stock is bought or sold is pre-determined

Financial Options: Basic Types

- Two basic types of stock options
 - Call: right to buy stock for a set price
 - Put: right to sell stock for a set price
- The set price is known as the “strike” price
- Options can get much more complicated
 - nested, one following another
 - simultaneous, opposing each other
 - very exotic -- not for now!
Financial Options: Timing Limitations

- Constraint on exercise defines 2 types
 - European
 - American

- European: can only exercise on expiration date
- American: can exercise at any time on or before expiration date
- American Options are much more realistic, generally
 - Most decisions can be made at any time
 - Remaining discussion focuses on American options, unless otherwise specified

Definitions of Key Features of Options

- \(S = \) stock price at any time
- \(S^* = \) price at time you exercise option
- \(K = \) strike price at which stock can be bought (call) or sold (put)
- \(t = \) time remaining until option expires
- \(\beta = \) standard deviation of returns for stock (volatility)
- \(r = \) risk-free rate of interest
Financial Options: Payoff

- **Payoff:** is the amount you get if you exercise the option

- **Call Option Payoff**
 - If exercised, call option owner buys stock for a set price
 - Get stock worth S^* dollars
 - Pay strike price of K dollars
 - Net position $= S^* - K$
 - If unexercised, net payoff is zero
- **Net Payoff of Call Option:**
 - Maximum of either 0 or $S^* - K = $ net payoff for call
 - Expressed as: $\text{Max} [0, S^* - K]$

Financial Options: Value

- **Value often exceeds Payoff**
 - Because variability of stock price can increase payoff of option
 - There is thus an expectation of greater value than immediate payoff

- **Calculation of Value**
 - requires sophisticated analysis
 - Determination of method for calculating value of options won Nobel Prize
 - Subject of Next Lecture
Options Not Limited to Traded Securities:
"Real Options" for Systems

- **Lease car with option to buy**
 - Leasee decides at end of contract
 - Action is to buy car at end of lease (or to walk away)
 - Lease period defined up-front (typically 2-3 years)
 - Car purchase price defined in lease contract

- **Flexible manufacturing processes**
 - Ability to select mode of operation (e.g. heater that burns gas or oil)
 - Switching between modes is action
 - Continuous opportunity (can switch at any time)
 - Switching modes often entails some cost (e.g. set-up time)

Real and Financial Options Differ

- **Real options do not refer to traded assets**
 - The option to change manufacturing process (use a different fuel) rather than to buy a stock

- **This means that there is no obvious history to value of asset**
 - Stocks are traded regularly and have a long record of: average price and variability

- **Real substitutes for this history not obvious**
 - If real option concerns traded commodities (such as fuels) a suitable history may be available
 - In other cases it may be quite impractical

- **Financial Methods of Valuing Options need adjustment when applied to real systems**
Summary of Introduction to Options

- Flexibility has value, because of risk
- Good Systems Design will incorporate flexibility to respond to risk
- Issue is: How do we value flexibility?
- Approach is through Options Analysis
- This Method well developed in Financial Markets
- Needs adjusting to engineering systems