Overview

- Introduction to topic of options
 - Review key points of NPV and decision analysis
 - Outline topics and goals for options segment of course
 - Options basics

- Motivation
 - NPV not suited to valuing of projects with flexibilities
 - Decision analysis with NPV still faces NPV shortcomings
 - Options valuation methodologies aim to resolve these problems
A Review of Project Valuation Methods

- Started with discounted cash-flows (NPV)
- Choice of discount rate important
- Process of selecting discount rate can be difficult
- Utility provide bases for risk adjustment

![Discount rate diagram]

Certainty is a Rarity

- Need to consider range of possible outcomes
- NPV with expected values & expected NPV not always equal -- See Exercise 2!!
 - Consequences of scenarios have asymmetries
 - Example, production cost versus volume curve not typically linear
- Decision analysis framework considers uncertainties

![Decision tree diagram]
Decisions Not Necessarily Fixed at Project Start

- Many projects have built-in decision points (flexibilities)
 - Expansion
 - Delay
 - Closing

- Choices are made after observation of outcomes

Decision analysis provides structure for choice evaluation

![Decision Tree Diagram]

- **Start**
 - **High**: 1/3
 - Expansion
 - Payoff \(H_E \)
 - **No Expansion**: 1
 - Payoff \(H_{NE} \)
 - **Medium**: 1/3
 - Similar Choice to 1
 - **Low**: 1/3
 - Similar Choice to 1
A Key Lesson from Decision Analysis

- Flexibility in projects can be extremely valuable
 - See Exercise 2

- What drives flexibility value?

- Factors to consider might include:
 - Degree of uncertainty
 - Time restrictions on decision
 - Cost of acquiring flexibility

Real Options Define Value of Flexibility

- Options valuation well developed for financial markets

- Emerging field of real options applies theory to real projects
 - Future decisions have features similar to financial options
 - Financial options valuation frameworks can be extended to project flexibilities

- Real options correct deficiencies in NPV & decision analysis
 - Will detail these deficiencies shortly
 - Will also consider potential drawbacks to real options
Outline for Options Segment of Course

- **Options basics**
 - What is an option
 - Features of financial options
 - Value drivers

- **Valuation of financial options**
 - Boundaries
 - Replicating portfolios
 - The Black-Scholes options pricing model
 - A more generalized approach

- **Real options: extension of options framework to projects**
 - Recognizing real options
 - Examples of valuation in practice

- **Real options compared to decision analysis**

Goals for Options Segment of Course

- **Improve understanding of flexibilities**
 - Value drivers
 - Value estimation

- **Develop introductory background on finance perspective**

- **Explore similarities, differences and limitations**
 - Real options
 - Decision analysis

- **Compare and contrast practical implementation efforts**
What is an Option?

- A right, but not an obligation...
 - Asymmetric returns
 - Exercise only if advantageous
 - Acquired at some cost

- to take some action...
 - Often buy or sell something

- now, or in the future...
 - Usually limited timeframe
 - Option expires after time limit

- for a pre-determined price.
 - Price of action separate from option acquisition cost
 - Can be compared to instantaneous benefit of action

Financial Options Basics

- Focus on stock options
 - Stock options are tradable assets
 - Sold through exchanges similar to stock markets
 - Options on other assets (e.g. currencies) have similar features

- Terms of option contract
 - Owner acquires option
 - Option provides right to buy or sell stock
 - Time period during which option can be exercised is limited
 - Strike price at which stock is bought or sold is pre-determined in contract
Financial Options Basics

- Example
 - Purchase 1-year option to buy 100 shares of X-cape at $100/share
 - Likely to exercise if stock trades above $100
 - Not required to exercise (losses limited)

Financial Options Terminology

- Two types of stock options
 - Call: right to BUY stock for a set strike price, at or within a certain timeframe
 - Put: right to SELL stock for a set strike price, at or within a certain timeframe

- Constraint on exercise defines two forms of stock options
 - European: exercise only on expiration date
 - American: exercise at any time on or before expiration date
Financial Options Terminology

- **Payoff versus value**
 - Payoff is value if exercised immediately
 - Value of option often exceeds immediate exercise payoff

- **American options more representative of real life options**
 - Most decisions can be made at any time
 - Remaining discussion focuses on American options, unless otherwise noted

Factor Definitions

- **S** = stock price (S^* is price at option point of exercise)
- **K** = strike price at which stock is bought (call) or sold (put)
- **t** = time remaining until option expires
- **\(\beta\)** = standard deviation of returns for stock (volatility)
- **r** = risk-free rate of interest
Uncovering the Sources of Value in Options

- Presented a number of terms and definitions

- Working toward placing an exact value on options

- Need to build up to valuation
 - Identify interesting features
 - Examine influences of value
 - Combine findings into valuation framework

- Start by looking at payoffs from options
 - Suggested that payoff and value might be different
 - Payoff structure does have influence on value

Call Option Payoff

- If exercised, call option owner buys stock for a set price
 - Get stock worth S^* dollars
 - Pay strike price of K dollars
 - Net position = $S^* - K$

- If unexercised, net payoff is zero

- Maximum of either 0 or $S^* - K = \text{net payoff for call}$

- Net payoff for call = Max [0, $S^* - K$]
Payoff Diagram for Call Option

- If exercised, put option owner sells stock for a set price
 - Sell stock worth S^* dollars
 - Receive strike price of K dollars
 - Net position = $K - S^*$

- If unexercised, net payoff is zero

- Net payoff for put = Max [0, $K - S^*$]
Payoff Diagram for Put Option

![Payoff Diagram for Put Option](image)

Valuation of Options

- **How much should you pay to acquire an option?**

- **Payoff diagrams show for a given strike price**
 - Call payoff increases with stock price
 - Put payoff decreases with stock price

- **Immediate payoff may not reflect full value of option**
 - Owner exercises only when advantageous
 - Must compare immediate exercise value with waiting
Why Immediate Payoff and Value Might Differ

- Consider an at the money option (S=K)
 - Immediate exercise payoff is zero
 - Positive payoff might be obtained by waiting
 - Worst outcome of waiting is zero payoff (same as immediate exercise)

Value in ability to wait not reflected in immediate exercise

- Value exceeds immediate exercise payoff
- Asymptotically approaches payoff for increased S
 - Incentive to lock in gain becomes significant
Examining Value for All Stock Prices

- Approaches zero as stock price nears zero
 - Option is worthless if stock reaches zero

- What influences difference between value & immediate payoff?

Option Value Increases with Volatility

- Two at the money options (S=K)
 * Both have 50% chance of zero payoff
 * Underlying with greater volatility has more opportunity for large payoffs

Asymmetric returns favor high variation (limited losses)
Impact of Time

- Increasing time to expiration increases option value
 - Ability to wait allows option owner to benefit from asymmetric returns
 - Longer-term American option contains shorter-term options, plus more time

- Compare a 3 and 6 month American call
 - Can exercise 6 month call at same time as 3 month
 - Can wait longer with 6 month
 - Which is more valuable?

- Time impact less clear for European options
 - Forced to wait to exercise
 - Could miss out on profitable opportunities

Generalized American Call Option Value

- For a set strike price, call option value increases with
 - Stock price increases
 - Volatility
 - Time

- Increased strike price
 - Reduces likelihood of payoffs
 - Reduces call option value

\[
\text{Payoff ($)} = \begin{cases}
0 & \text{if } S < K \\
S - K & \text{if } S > K
\end{cases}
\]

Value increases with volatility and time to expiration
Generalized American Put Option Value

- For a set strike price, put option value increases with:
 - Stock price declines
 - Volatility
 - Time

- Increased strike price:
 - Increases likelihood of payoffs
 - Increases put option value

Value increases with volatility and time to expiration

Implications for Real Options

- Some factors influence options value in the same way:
 - Options more valuable for risky projects (higher volatility)
 - Options more valuable for long-term efforts

- Influence of other factors depends on the type of option:
 - Exercise (strike) price
 - Changes in underlying asset value (stock)

- Need to distinguish real options by type:
 - Call-like
 - Put-like
Summary of Financial Options Basics

- Options provide rights, not obligations
 - Asymmetric returns (exercise only if advantageous)
 - Potential loss limited to acquisition price

- Option payoff based on
 - Underlying stock price (S)
 - Strike price (K)

- Critical question: How much to pay for Options?
 - Stock price and strike price matter
 - Value of American options increases with time and volatility

- Next sessions, explore frameworks for exactly valuing options