Real Options

Richard de Neufville
Professor of Systems Engineering and of
Civil and Environmental Engineering
MIT

Outline for Real Options

- Major topics
 - Real options defined
 - Examples of real options plentiful in everyday life
 - Features of several generic real options
 - Comparisons of valuation in practice

- Goals
 - Increase ability to recognize real options
 - Compare and contrast some different approaches
to valuation and use of real options
Option Definition Revisited

- A right, but not an obligation...
 - Asymmetric returns
 - Exercise only if advantageous
 - Acquired at some cost

- to take some action...
 - Often buy or sell something

- now, or in the future...
 - Financial options generally have a limited time
 - Design Options may not have limits

- for a pre-determined price.
 - Price of action separate from option acquisition cost
 - Can be compared to instantaneous benefit of action

Real Options Defined

- Projects often contain option-like flexibilities
 - Rights, not obligations
 - Providing Asymmetric Returns, Exercise only if advantageous

- These flexibilities are “real” options

- Traditional NPV analysis has ignored these options
 - Assumes decisions not possible or are pre-determined
 - Disregards the effect of intelligent management

- “Real Options” analysis includes valuation of flexibility
 - Applies some form of Options Analysis

- Systematically increases value of projects, especially for development projects with greater uncertainties
 - Ex: R & D, new technologies, etc.
Real Options are Common

- **Examples:**
 - Lease car or equipment with option to buy
 - Person with lease decides at end of contract
 - Action is to buy at end of lease (or to walk away)
 - Lease period defined up-front (typically 2-3 years)
 - Purchase price defined in lease contract
 - Flexible manufacturing processes
 - Ability to select mode of operation (e.g. heater that burns gas or oil)
 - Switching between modes is action
 - Continuous opportunity (can switch at any time)
 - Switching modes often entails some cost (e.g. set-up time)

A Common Option: Insurance

- **Insurance policy**
 - Small annual premium protects from potential losses
 - Payoff equals amount of damage (minus a deductible)
 - Claim is filed (option exercised) if damage total exceeds deductible

- **Payoff is different from value**
 - On average, expected net payoff to policyholder is less than premium
 - Otherwise insurance companies go bankrupt
 - People still buy insurance, because they are risk averse
 - Implies value exceeds expected payoff
A Payoff Diagram for Insurance

- Maximum payoff is insured value minus deductible
- Minimum payoff is zero
- Payoff resembles put option

Boundaries on Insurance Value

- Insurance premium approximates value
 - Willingness to pay for protection
 - Reflects value to least risk-averse policyholder
- Can identify boundaries on the premium
- Upper bound is value of apartment less deductible
 - Even if total loss is certain, this is the limit of the payoff
 - Since damage is uncertain, premium will be less
- Lower bound is zero
 - Insurance companies are in business to make money
- If insuring already damaged property were possible
 - Lower bound would exceed immediate payoff
 (exercise value)
Estimate of Insurance Value

![Diagram of insurance value estimation]

<table>
<thead>
<tr>
<th>Premium (Value)</th>
<th>Lower Bound Immediate Payoff</th>
<th>Upper Bound: Insured Value Less Deductible</th>
</tr>
</thead>
</table>

Features of Insurance

- Payoff increases with
 - Reduction in value of property
 - Decreases in Deductible (increases in strike price)
 - Time Frame of Policy
 - Likelihood of Damage Occurring

- Same Trends as a put option

- Insurance is like a put option on the insured property
Several Generic Real Options

- **Call-like**
 - Capture benefits from increases in project value
 - Exercise typically involves putting more money into project
 - Exercise when expectations of positive return increase

- **Put-like**
 - Insure against losses from decreased project value
 - Exercise may involve short-term costs or salvage value
 - Exercise when expectations of positive return decrease

- **Compound (nested)**
 - Projects might contain multiple options
 - Exercise decisions based on overall profit maximization

Call-Like Real Options

- **Waiting to Invest**
 - A project might be profitable today, but even better tomorrow
 - Leaving open the opportunity to invest is like holding a call
 - Influences include uncertainty resolution and foregone profits
 - Choice based on: Max [immediate investment, waiting, 0]

- **Expand**
 - Accelerate effort or broaden level of involvement
 - Allows greater participation in upside by increasing exposure
 - Cost of expansion acts like strike price
 - Choice based on: Max [status quo, expanded project]

- **Restart Temporarily Closed Operations**
 - Similar to waiting to invest or expand (a special case)
 - Choice based on: Max [remain closed, re-open]
Put-Like Real Options

- **Abandon**
 - Ability to halt further investment eliminates further exposure
 - Abandoning might include shut-down costs and salvage values
 - Choice based on: Max [continuing, abandoning]

- **Contract**
 - Decelerate or narrow involvement
 - Reduces participation level and exposure to potential losses
 - Often incur short-term scale down costs
 - Choice based on: Max [status quo, contracted]

- **Temporarily Shut Down Operations**
 - A special case of contraction
 - Eliminates exposure to variation, but might incur shut-down costs
 - Choice based on: Max [status quo, temporarily shut-down]

Compound or Nested Options

- **Combinations of Options**
 - Many real options exist simultaneously
 - For Example: can often choose between abandon, contract, or temporarily shut
 - Complex problem because value of multiple options not additive
 - Values of above listed options interdependent
 - Exercise may render others valueless (abandon ends project)

- **Switching Between Modes of Operation** (example: dual fuel burner case)
 - Flexible systems contain an infinite series of options
 - Allow continual switching between modes of operation
 - If switching modes has a cost, it acts like a strike price

- For compound options, must value as system
Two Types of Real Options

- Those “real” because, in contrast to financial options, they concern projects, they are “ON” projects
 - EX: the option to open a mine (Antamina case)
 - These do not concern themselves with system design
 - Most common in literature

- Those “real” because they concern the design elements of system, they are “IN” projects
 - EX: options for staging of system of communication satellites
 - These require detailed understanding of system
 - Most interesting to system designers

Real Options

<table>
<thead>
<tr>
<th>Financial options</th>
<th>Options ON projects</th>
<th>Options IN projects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>These need knowledge of system</td>
</tr>
</tbody>
</table>

Real Options “on” projects

- These are financial options, but on technical things

- They treat technology as a “black box”

- Example: Antamina mine
 - Successful bidder acquires the option to develop the mine after a two-year exploration period
 - Uncertainty concerns amount of ores and their future price, which combine to determine uncertainty in revenue and thus in value of mine
 - Option is a Financial Call Option (on Mine as asset)

- Differs from Financial Option because
 - Much longer period than financial option
 - Special effort needed to model future value of asset, it can’t be projected simply from data on past performance
Real Options “in” projects

- These create options, by designing technical system
- They require understanding of technology
- Example: Communications Satellites
 - Designers can create options for expansion of capacity by way they configure original satellites and their constellation
 - Option requires technical intervention in order to create and to exercise
- Differs from other “real” Options because
 - Special effort needed to model feasible flexibility within system itself

Choosing Valuation Method in Practice

- Compare efforts at two companies
 - Merck: used financial approach to options
 - Kodak: used decision analysis
- Examine Factors that influence Choice
 - Type of Information available
 - Structure of Industry, possibility of comparable situations
 - People in organization doing analysis: engineers or finance?
- What is goal?
 - Judgement: finding a precise price to pay?
 - Choice: Are we better off with option than without?
- Finding:
 - Valuation is a balance between “precision” and “practicality”
Real Options at Merck

- Merck values real options using financial framework
 - Black-Scholes formula
 - Other models for support (monte-carlo simulation)
 - Applies to variety of areas: R&D, acquisitions, etc...

- Example: Gamma project
 - Options analysis used to value development contract with a biotech company
 - Investment in R&D creates option for future scale-up and commercialization
 - Similar to motivation example in Options Concepts lecture:
 Investment contract with start-up can be dropped... or company can be bought out research phase successful

Analysis for Merck Case

- Project Gamma as a call option
 - Can be exercised after development phase (about two years after time zero) when prospects are more clear

- Valuation procedure
 - Value of project = Capitalized value of projected cash flows acted as underlying asset (stock equivalent)
 - This is equivalent to projected stock market price
 - Volatility based on comparable companies in biotech databases
 - Varied between 40-60 percent as part of sensitivity analysis
 - Cost of manufacturing scale-up is strike (exercise) price
 - Time before expiration was varied between 2 to 4 years
 - Risk-free rate based on U.S. Treasuries
Real Options at Kodak

- Kodak has valued real options using decision analysis
 - Understanding financial frameworks informs process
 - Occasionally, might use more strict financial framework

- Example: color printer project
 - R&D project faces technical and market uncertainties
 - Must decide separately if R&D and commercialization are worth pursuing
 - R&D creates option to commercialize
 - Analysis done in R&D/Systems Engineering group

Analysis for Kodak Case

- Color printer project as a real option
 - Project cash-flows serve as basis for valuing asset
 - Commercialization scale-up costs act as strike price
 - Timeframe was two years (1993 - 1995)
 - Discount rate of 12% used
 - Volatility of payoffs implied by considering range of outcomes
Drivers of Choice of Method: Business Structure

- **Merck**
 - Pharmaceutical development process highly regulated by FDA
 - All go through same path to market (10 years)
 - 1000’s of candidate drugs provide statistical database
 - Reasonable to speak in terms of an average project and estimate volatility

![Diagram of pharmaceutical development processes](image)

- **Kodak**
 - Involved in multiple businesses: film, imaging, printing, etc.
 - Product development processes might be similar, but do vary
 - Hard to think of what an average project might be
 - No comparable data available publicly, either from FDA or from range of start-ups in imaging industry (there aren’t any)
 - Data needed for a financial analysis not available
Drivers of Choice of Method: Information Availability

- **Merck**: structure yields significant historical information
 - Average drug takes $359 million and 10 years to market
 - 1/10,000 compounds tested becomes a drug
 - Fraction of population with disease X known
 - Successes and failures at each testing step documented and averaged
 - Database of pharmaceutical and biotech stock performance created

- **Kodak**: less homogeneous historical project data
 - Significant variation between and within business units
 - Difficult to assemble relevant databases
 - Projects might vary widely from averages anyway

Goals of Options Valuation at Merck and Kodak

- **Companies recognize that project options are valuable**

- **Mind-set more important than precision**
 - Kodak states this explicitly
 - Merck does sensitivity analysis (varies volatility and time)

- **Selection of Valuation method based on ease of implementation**
 - Merck finance dept: uses financial models, has needed data
 - Kodak R&D dept: uses decision analysis as seems useful

- **Hard to argue which approach is better...**
 - Objectives, circumstances differ substantially
 - Sensitivity analysis helps to address remaining uncertainties
Real and Financial Options Differ

- Real options may not refer to traded assets
 - The option to change manufacturing process (use a different fuel) rather than to buy a stock

- Thus, possibly no obvious history to value of asset
 - Stocks have a long record of average price and variability

- Real substitutes for this history not obvious
 - If real option concerns traded commodities (such as fuels) a suitable history may be available
 - In other cases it may be quite impractical

- Financial Methods of Valuing Options need adjustment when applied to real systems

Points to Consider in Selecting Valuation Method

- Options theory concerned with pricing
- Decision analysis concerned with developing strategy

- Must consider needs
 - Valuation according to strict finance perspective
 - Setting guidelines for strategic planning

- Should also consider
 - level of required effort
 - ease of use -- by developers and clients of analysis

- Beware of false sense of precision
Also Keep in Mind...

- Conditions when financial models work well
 - One or a few uncertainty variables
 - These have an established market price history

- Conditions when decision analysis works well
 - Likelihood, timing of critical uncertainties and decisions understood
 - Information sources focused on individual project
 - Variables without an established price history are important

- Real options approaches can be more compact
 - Decision trees rapidly become bushy

- Significant value in the mind-set
 - Approximate values can be a vast improvement

Summary

- Real options encountered in projects and daily life, and are in 1 of 3 general forms
 - Call-like (opportunities to increase commitment)
 - Put-like (opportunities to insure or decrease commitment)
 - Compound (many options influence project simultaneously)

- Finance Models
 - Are Correct Theoretically
 - May be Differ to apply
 - Precision may be illusory, since data is not fully appropriate

- Decision analysis
 - Not Correct if Replicating portfolio can be established
 - Make often be most practical, however

- Choice of Valuation depends on Circumstances
Some References

– Real Options, Lenos Trigeorgis, MIT Press 1996

– Real Options in Capital Investment, Trigeorgis, ed. Praeger, 1995

– Journal of the Financial Management Association, 22(3), Autumn 1993 (Special Section on in Real Options …)