Defining Capacity of Airport Passenger Buildings

Dr. Richard de Neufville
Professor of Systems Engineering and Civil and Environmental Engineering
Massachusetts Institute of Technology

- Objective: To Present and Explain Standards for Sizing
- Topics
 - Concepts of Capacity
 - Design Concept
 - Levels of Service
 - IATA Space Standards (New Version in 2004!)
 - Dwell Time
 - Flow Standards
 - Summary
Concepts of Capacity I

1. Static: Storage Potential of Facility

2. Dynamic: Ability of Facility to Process Flows
 - The Central Concept for the Design of Airport Passenger Buildings
 - Passengers, bags, cargo always Queue for and Move through Services (e.g.: Check-in, inspections, waiting for departures, etc.)

Concepts of Capacity II

- Dynamic Capacity can be:
 1. Sustained: Maximum flow over a significant period i.e., a morning arrival period
 2. Maximum: Maximum flow for a brief period

- Dynamic Capacity is a Variable!!!
 Unlike Static Capacity, of a bottle
Design Concept

- From Queuing Theory recall:
 More Space, Service => Less Delays

- Design for Dynamic Flows is:
 Tradeoff between Delays and Cost of Service, Space

- Dynamic Capacity depends on:
 1. Acceptable level of Delays and thus:
 2. Length of Period over which delays build up

- For Short Periods, More Delays Tolerable

Level of Service (LOS)

- A verbal description of Quality of Service in terms of Ease of Flow and Delays

- 6 categories (IATA Airport Development Man.):

<table>
<thead>
<tr>
<th>LOS</th>
<th>Flows</th>
<th>Delays</th>
<th>Comfort</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Excellent</td>
<td>Free</td>
<td>None</td>
<td>Excellent</td>
</tr>
<tr>
<td>B - High</td>
<td>Stable</td>
<td>Very Few</td>
<td>High</td>
</tr>
<tr>
<td>C - Good</td>
<td>Stable</td>
<td>Acceptable</td>
<td>Good</td>
</tr>
<tr>
<td>D - Adequate</td>
<td>Unstable</td>
<td>Passable</td>
<td>Adequate</td>
</tr>
<tr>
<td>E - Inadequate</td>
<td>Unstable</td>
<td>Unacceptable</td>
<td>Inadequate</td>
</tr>
<tr>
<td>F - Unacceptable</td>
<td>--- System Breakdown ---</td>
<td>Unacceptable</td>
<td></td>
</tr>
</tbody>
</table>

- System Managers should Specify LOS, e.g:
 1. Level C = standard minimum ; Level D = for crush periods
IATA LOS Space Standards

- Useful intro to more sophisticated new version

- In square meters per person

<table>
<thead>
<tr>
<th>Area</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait/circulate</td>
<td>2.7</td>
<td>2.3</td>
<td>1.9</td>
<td>1.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Bag Claim</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Check-in Queue</td>
<td>1.8</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Hold-room Inspection</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

- More space needed for movement, with bags

IATA Stds: Wait / Circulate

- Old:
 - Square meters / Passenger for Level of Service
A	B	C	D	E
2.7	2.3	1.9	1.5	1.0

- New:
 - Distinguishes locations, likelihood of carts
 - References speed

<table>
<thead>
<tr>
<th>Location</th>
<th>Carts</th>
<th>Space m^2/pax</th>
<th>Speed m / sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airside</td>
<td>None</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>After check-in</td>
<td>Few</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Departure area</td>
<td>many</td>
<td>2.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>
IATA Stds: Passport / Hold

Old:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
</tr>
</tbody>
</table>

New (for hold rooms only):
- Assumes 1.7 m²/pax sitting, 1.2 m²/ standee
- LOS defined in terms of % of space used

<table>
<thead>
<tr>
<th>Maximum Occupancy Rate (% of Capacity)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>50</td>
<td>65</td>
<td>80</td>
<td>95</td>
</tr>
</tbody>
</table>

IATA Stds: Bag Claim Area

Old:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

New:
- Assumes 40% of Passengers use carts
- Has a wider range: more for A, less for E

<table>
<thead>
<tr>
<th>Square meters / Passenger for Level of Service</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.6</td>
<td>2.0</td>
<td>1.7</td>
<td>1.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>
IATA Stds: Check-in Area

• Old:

<table>
<thead>
<tr>
<th>Row width</th>
<th>Carts bags</th>
<th>Square meters / Passenger for Level of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2m</td>
<td>few</td>
<td>A: 1.8 B: 1.6 C: 1.4 D: 1.2 E: 1.0</td>
</tr>
<tr>
<td></td>
<td>more</td>
<td>A: 1.8 B: 1.5 C: 1.3 D: 1.2 E: 1.1</td>
</tr>
<tr>
<td>1.4 m</td>
<td>high</td>
<td>A: 2.3 B: 1.9 C: 1.7 D: 1.6 E: 1.5</td>
</tr>
<tr>
<td></td>
<td>heavy</td>
<td>A: 2.6 B: 2.3 C: 2.0 D: 1.9 E: 1.8</td>
</tr>
</tbody>
</table>

• New:

→ Reflects impact of number of bags, carts

Snake Line at LOS = C
Snake line at LOS = E

Note: Kiosks change process

- Kiosks = automated check-in machines => CUSS (Common Use Self Service) if common
- Speeds up check-in
 - Automated data entry (try “de Neufville”)
- Less Staff, Less counter Space
 - => Old layouts obsolete see Boston Internatl. Bldg
- Disperses Queues
 - Latest standards do not apply easily...
- CUSS at Las Vegas, Tokyo, in Canada
Dwell Time

- Determines Capacity of any space or process
- A Central Concept: Source of Major Problems

- It is the Average Time a person is in a space or process
- When a person leaves a space, Replacement can use it
- As people move faster
 - Dwell time is shorter
 - More replacements can use space in any period

Formula for Space Required

- Space Required, sq. meters = (Load, pers./hour) (Std, sq.m./person) (Dwell time, hours)
 = (Persons/Time) (Area/Person) (Time) = Area

- Example:

 What space is required for passport inspection of 2000 passengers per hour when maximum wait is 20 minutes?

 Space Needed = 2000 (1) (1/3) = 667 sq. m.
Formula for Capacity of a Space

- Load, persons per hour = (Space, sq. m.) / (Std, sq. m. per pers)(Dwell time, hrs)

Examples:
- What is the recommended load (LOS = C) for a 30m. by 50m. waiting room, in which transit passengers average 90 minutes?
 Recommended load = (30) (50) / (1.9) (1.5) = 1500 / 2.85 = 527
- What is the crush capacity of the same space?
 Crush load = (30) (50) / (1.5) (1.5) = 667 pers. per hr.

Flow Standards

In terms of PMM = Persons/Minute/Meter

<table>
<thead>
<tr>
<th>Type of Passageway</th>
<th>Level of Service Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Corridor</td>
<td>10</td>
</tr>
<tr>
<td>Stairs</td>
<td>8</td>
</tr>
</tbody>
</table>
Assumptions of Flow Standards

- **Two Factors**
 - 1. Space per Person
e.g.: 1.9 sq. m. per person for LOS = C
 - 2. Walking Speed
e.g.: 66 meters/min = 4 km/hour
 => Low Dwell Time
 => High Capacity

- **Example:**
 Capacity of Corridor, 5m. wide, 40m. long
 Dwell time = 40 / 4000 = 0.01 hour
 Recommended Load, persons per hour
 = (5) (20) / (1.9) (0.01) = 5,000
Formula for Flow Areas

- Total Corridor Width Needed, meters = Effective Width + 1.5m. for edge effects
- Eff. width = (Persons /Minute) / (PMM)
- Example: What is recommended width of corridor to handle 600 persons per quarter hour, in both directions?
 Effective width = 80 / 20 = 4.0m
 Required width = 4.0 + 1.5 = 5.5m

- Note: Corridor capacity is very great!
 - Most corridors > need ; Architectural considerations dominate

LOS varies over day, year!

- Example Distribution from Toronto
Summary

• Key concepts about capacity:
 1. Not purely technical issue
 2. Management decision about tradeoffs Cost vs. LOS
 3. Financial and Service Objectives of Airport critical

• Key technical details:
 1. Dwell time critical factor
 2. Through flows slash dwell time
 3. Capacity of corridors enormous