Configuration of Airport Passenger Buildings

Dr. Richard de Neufville

Professor of Systems Engineering and Civil and Environmental Engineering
Massachusetts Institute of Technology

Outline

• Introduction
 → Motivation
 → Important Ideas

• Range of Configurations

• Process of Evaluation
 → Criteria of Selection
 → Method of Analysis
 → Differences in Traffic Loads on Buildings

• Performance of Configurations

• Recommendation
 → “Hybrid” design responsive to future traffic
Motivation

• No Agreement in Industry about good configuration
 → NACO -- X-shaped satellites in parallel rows: Bangkok/2nd Airport; Kuala Lumpur /International
 → “Atlanta” -- Midfield lines: Denver/International
 → Aeroports de Paris -- Triangles onto spine roads Paris/ de Gaulle

• Many Errors -- Many Choices have been inadequate for eventual traffic
 → Dallas/Ft Worth -- linear building bad for transfers
 → Boston/Logan -- International Building => domestic hub

Important Ideas

• “Airport Passenger Building”
 → NOT A TERMINAL, many passengers do not end their air trips there
 → Many passengers “transfer” between
 • Airlines ; Buildings ; Aircraft of an Airline

• “Correct Choice”
 → NOT THE OPTIMUM, for assumed conditions
 → RIGHT RESPONSE, over range of conditions
Change to View of Airport as “Passenger Buildings”

<table>
<thead>
<tr>
<th>Criteria Considered</th>
<th>Single (or Few)</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow</td>
<td>Prevalent in Current Practice</td>
<td>“Terminals”</td>
</tr>
<tr>
<td>Broad</td>
<td>Broad Range, Multiple Criteria Performance</td>
<td>“Airport Passenger Buildings”</td>
</tr>
</tbody>
</table>

Range of Conditions

- “Pure” Concepts
 - Linear or Gate Arrival
 - Pier; Satellite
 - Midfield
 - Transporter

- “Hybrid” Concepts
 - Combinations of Pure Elements

- Centralized and Decentralized

- Rail Access
 - Automated People Movers
 - Metropolitan
Linear: Dallas/Forth Worth

Source: FAA Office of System Capacity
Aviation Capacity Enhancement Plan

Finger Pier: Miami/International

Source: FAA Office of System Capacity
Aviation Capacity Enhancement Plan
Satellites (New York/Newark)

Satellites: Tampa

Source: FAA Office of System Capacity
Aviation Capacity Enhancement Plan
Midfield, Linear: Denver/Intl

Source: FAA Office of System Capacity Aviation Capacity Enhancement Plan

Midfield: London/Stansted
Midfield, X-shaped: Pittsburgh

Source: FAA Office of System Capacity
Aviation Capacity Enhancement Plan

Transporter: Washington/Dulles

Configuration as it has been

Source: FAA Office of System Capacity
www.asc.faa.gov
Midfield: Washington/Dulles

Configuration as planned

Source: FAA Office of System Capacity
Aviation Capacity Enhancement Plan

Hybrid: New York/LaGuardia

Source: FAA Office of System Capacity
Aviation Capacity Enhancement Plan
Hybrid: Chicago/O’Hare

Note: new trends in layouts

- Common Rental Car Facilities, often linked by people mover
 - Increasing popular
 - Eliminates circulating vans
 - New York/Newark, San Francisco, etc

- Low-cost buildings for low-cost carriers
 - Outside US, where Govt. has built buildings this is novelty – In US airlines pay and define
 - Paris/de Gaulle, Singapore (06), Marseille (06)
Process of Evaluation

- Criteria of Selection
 - Multiple Criteria
 - Broad Forecasts

- Methods of Analysis
 - Rapid, Computerized

- Differences in Traffic Loads on Buildings
 - Percent Transfers
 - Variability of Traffic
 - Need for Services

- Performance of Buildings

Criteria of Selection

- Multiple
 - Walking Distances
 - Average, Extremes
 - Terminating, Transfers
 - Aircraft Delays
 - Costs

- Under Range of Conditions
 - High, Low Traffic
 - High, Low Transfer Rates
Methods of Analysis

- Manuals (IATA, ICAO, etc.)
 - Limited Perspective
 - Unsuitable for Major Projects
- Analytic Formulas
 - Unrealistic
- Detailed Simulations
 - Difficult to Set Up
 - Too Slow for Planning
- Need: General, Computer Analysis

Problem Statement (Graphically)
Current Decision Support Is Inadequate

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Selection Of Initial Configuration and Geometry</th>
<th>Reference Manuals/Texts</th>
<th>Analytic Formulae</th>
<th>Computer-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LATA, ICAO, FAA, TRB, Parsons, Transport Canada, Ashford, Blow, Hart, Blankenship, Horonjeff and McKelvey</td>
<td>Bandara, Robuste, Vandebona, Wirasinghe</td>
<td>Need</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Detailed Layout of Floor Plan</th>
<th>Reference Manuals/Texts</th>
<th>Analytic Formulae</th>
<th>Computer-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LATA, ICAO, FAA, TRB, Parsons, Transport Canada, Ashford, Blow, Hart, Blankenship, Horonjeff and McKelvey</td>
<td>Impractical</td>
<td>Dunlay, Pararas, BAA, FAA, Transport Canada, Private Industry</td>
<td></td>
</tr>
</tbody>
</table>

Difference in Loads

- “Total Number of Passengers” does not properly define loads on Buildings
- Effective Loads depend on Passenger Needs
- Key Load Characteristics:
 - Transfer Rates (%)
 - passengers changing aircraft, buildings or airlines
 - Variability of Traffic
 - Daily, Seasonal Patterns
 - Need for Services
 - International controls; Meals and accommodations
 - Industry Structure
 - Aircraft Types
Transfer Rates

- **Transfer passengers require:**
 - Easy Internal Flow; No Airport Access

- **Hub-and-Spoke Airports**
 - have very high transfer rates, more than 50%
 - common worldwide (fewer in US, more in Europe and Asia)

- **Examples:**
 - High Rates: Chicago/O'Hare, Minneapolis/St.Paul, Denver/Intl, Dallas/Fort Worth, Detroit/Metro, Salt Lake City...
 Hong Kong/CLK, Tokyo/Narita (Northwest), London/Heathrow, Amsterdam/Schiphol...
 - Low Rates: Boston/Logan, San Francisco/Intl, Montreal/Dorval, London/Gatwick...

Variability of Traffic

- **Steady Loads**
 - Low Cost/Passenger for Built Facilities
 - Typical Case: Business Market
 - Example: New York/LaGuardia

- **Variable Loads**
 - Low Utilization for Marginal (less Attractive) Facilities
 - High Cost/Passenger for Built Facilities
 - Typical Case: Tourist, Special Event Markets
 - Examples: London/Gatwick; Jeddah
Variability decrease with traffic

Source: Port Authority of NY/NJ, 1995
Source: ICAO Digest of Statistics, 1995
Variations in Traffic at New York and London Airports (c.1975)

Example of Daily Traffic Fluctuations
Performance

• Linear
• Centralized
• Satellite
• Midfield
• Transporter
• Sensitivity to
 → Transfer Rates
 → Industry Structure

Performance: Linear

• Cost
 → High
 → Only one side of “fingers” used by aircraft

• Access
 → Mixed
 → Passengers: OK for locals, Terrible for Transfers
 → Aircraft: Good

• Services:
 → Poor
 → Excessive Staff/Passenger
 → Low Traffic for Concessions
Performance: Centralized

- **Cost**
 - Relatively Low
 - High per Passenger if Variability is high and expensive building often under used

- **Access**
 - OK in General
 - Especially good for transfers
 - Not so good for aircraft

- **Services**
 - Good
 - Efficient use of Personnel
 - High traffic for concessions

Performance: Satellite

- Efficient Use of Waiting Areas
- Efficient for Transfers
- Designs Sensitive to Transfer Rates
Performance: Midfield

- **Big Differences between**
 - Linear buildings (Atlanta, London/Heathrow T5)
 - X-Shaped (Pittsburgh, Kuala Lumpur)
- **Linear**
 - Space Needed/Aircraft Stand: Excellent
 - Delays to Aircraft: Minimal
 - Practical When distances between runways large
- **X-Shaped**
 - Suitable for Narrow Airfields
 - Space Needed/Aircraft Stand: Poor
 - Delays to Aircraft: Large

Performance: Transporter

- **Cost**
 - Mixed
 - Variability high: Good -- costs are reduced when service not needed
 - Low Variability: High Costs
- **Access**
 - Good Overall
 - Passengers: generally good... delays on short flights
 - Aircraft: Great
- **Services**
 - Good
Recommendation: “Hybrid” Designs Best

- Hybrid designs best because:
 - Meet Variety of Existing Needs
 - Adapt Easily to Future Needs
 - Cost-Effective
 - Maximize quality of service to
 - Passengers
 - Airlines
 - Airport Owners
- Example:
 - Paris / Charles de Gaulle (Air France)

Conclusion

- Configurations
 - Cannot be best for all conditions
 - ... only for some limited conditions
- Since Conditions Vary
 - For Airport Users:
 - Business Shuttles, Holiday Traffic
 - Over Time
 - With Traffic Levels and Types
 - Changes in Industry Structure
- Do not apply single configuration!