Evaluation of Flexibility for a Primary Residence

Michael Pasqual
MIT ESD.71, Fall 2009

Outline

• Motivation
• System Definition
• Model
• Uncertainties
• Design Concepts
• Decision Analysis
• Lattice Analysis
• Simulation
• Conclusions
Motivation

- Fiance and I need a home for when we get married
- Housing market is perfect
 - Low prices
 - Low mortgage rates

System Definition

- The system is our primary residence
- Demand-capacity challenge
 - Capacity: #bedrooms in home
 - Demand: #family members
- Benefits
 - My focus: shelter
 - Many others: stability, security, tax benefits, equity
- Design variables
 - My focus: #bedrooms
 - Many others: location, age, external/internal features, aesthetics, appreciation potential
Model

- **Timeline (30 years)**
 - Buy home in Year 0
 - Have children until Year 10
 - Family lives in home until Year 30
 - Sell home in Year 30

- **Home prices**
 - Constant at current median prices
 - Rationale: we are buying in near future, inflation-adjusted house prices usually steady over time

- **Benefits**
 - Occupied BR delivers $6000/year
 - Based on ½ value of a $1000/mo 1BR apartment
 - Children can share rooms if necessary
 - Unoccupied rooms deliver no value

Uncertainties

- **Family size**
 - Probability of having a child in a 2-year period is \(p = 0.8 \)
 - \#children \(N_{10} \) in 2M years is a binomial distribution:
 \[
 P(N = n) = \binom{M}{n} p^n (1 - p)^{M-n}
 \]
 - \(E[N_{10}] = 4, \sigma_{N_{10}} = 0.89 \)

- **Home/building prices**
 - Assume constant for model, but obviously uncertain too
 - Median prices rounded to nearest $50K (zillow.com)
 - Adding bedrooms cost $50K/BR (costhelper.com)
Design Concepts

- **Big House (fixed)**
 - Buy 5BR house for $500K in Year 0
 - Delivers $30K/yr at capacity
 - Sell 5BR house for $500K in Year 30
 - Note: 5BR determined to be optimal fixed design

- **Small House (flexible)**
 - Buy 3BR house for $400K in Year 0
 - Delivers $18K/yr at capacity
 - Expansion capability in Year 8: add BRs for $50K/BR
 - Sell 3BR house for $400K in Year 30

- **Condo (flexible)**
 - Buy 2BR condo for $350K in Year 0
 - Delivers $12K/yr at capacity
 - Expansion capability in Year 8: sell condo and buy a 4BR or 5BR house
 - Incur seller closing cost of $35K
 - Sell condo or 4/5BR house in Year 30

Cash Flows

<table>
<thead>
<tr>
<th>Design Concept</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Big House</td>
<td>-500</td>
</tr>
<tr>
<td>Small House</td>
<td>-400</td>
</tr>
<tr>
<td>Condo</td>
<td>-350</td>
</tr>
</tbody>
</table>
Decision Tree

- 2-stage decision tree
 - Stage 1: choose design concept in Year 0, then have children for 6 years
 - Stage 2: choose how/whether to expand in Year 8, then have children for 4 more years

<table>
<thead>
<tr>
<th>1st Stage</th>
<th>2nd Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Decision: [HPV]</td>
<td>YI/YI (child?)</td>
</tr>
<tr>
<td>Big House</td>
<td>Y or N</td>
</tr>
<tr>
<td>Small House</td>
<td>Y or N</td>
</tr>
<tr>
<td>Condo</td>
<td>Y or N</td>
</tr>
</tbody>
</table>

Solve Decision Tree

Stage 2

- e.g., Small House – maximize E[NPV] of 2nd decision
Solve Decision Tree
Fold-back

- e.g., Small House – Stage 2 pruned and folded back

<table>
<thead>
<tr>
<th>1st Decision</th>
<th>E[NPV]</th>
<th>V2 (K)</th>
<th>V4 (K)</th>
<th>V5 (K)</th>
<th>Chance Outcomes (%)</th>
<th>2nd Decision</th>
<th>E[NPV]</th>
<th>V2 (K)</th>
<th>V4 (K)</th>
<th>V5 (K)</th>
<th>Chance Outcomes (%)</th>
<th>p</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small House</td>
<td>71.62</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>3.01</td>
<td>5.01</td>
<td>310</td>
<td>500</td>
<td>700</td>
<td>900</td>
<td>1.01</td>
<td>5</td>
<td>8.64</td>
</tr>
<tr>
<td>Big House</td>
<td>3.07</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>1.01</td>
<td>2.01</td>
<td>210</td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>0.64</td>
<td>1</td>
<td>4.11</td>
</tr>
<tr>
<td>Condo</td>
<td>9.4</td>
<td>500</td>
<td>850</td>
<td>1200</td>
<td>2.01</td>
<td>3.01</td>
<td>800</td>
<td>1200</td>
<td>1600</td>
<td>2000</td>
<td>3.01</td>
<td>3</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Decision Analysis
Results

- Multiple Criteria
- Value-At-Risk-Gain (VARG) curve
- Conclusion
 - Small House is best by all metrics (except CAPEX)
 - Big House is second best

<table>
<thead>
<tr>
<th>Design Concept</th>
<th>Criteria</th>
<th>ROI (E[NPV] / CAPEX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big House</td>
<td>E[NPV] (SK)</td>
<td>P0 (SK)</td>
</tr>
<tr>
<td>47</td>
<td>-30</td>
<td>67</td>
</tr>
<tr>
<td>Small House</td>
<td>72</td>
<td>-8</td>
</tr>
<tr>
<td>Condo</td>
<td>29</td>
<td>-22</td>
</tr>
</tbody>
</table>
Lattice Development

<table>
<thead>
<tr>
<th>Years</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>#children</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Probability Lattice

<table>
<thead>
<tr>
<th>Years</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilities</td>
<td>1.00</td>
<td>0.80</td>
<td>0.64</td>
<td>0.51</td>
<td>0.44</td>
<td>0.33</td>
<td>0.00</td>
</tr>
<tr>
<td>0.20</td>
<td>0.32</td>
<td>0.38</td>
<td>0.44</td>
<td>0.41</td>
<td>0.33</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
<td>0.29</td>
<td>0.50</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.20</td>
<td>0.50</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.50</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum Check

<table>
<thead>
<tr>
<th>Years</th>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
</tr>
</thead>
</table>

Lattice Analysis

- **Start with Small House**
- **Call option:** to add 2BRs for $100K
- **Is it optimal to expand in next period?**

<table>
<thead>
<tr>
<th>Years</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise Option?</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

- **Expand if...**
 - 2 children by Yr 4
 - 2 children by Yr 6
 - 3 children by Yr 10
Simulation

- Monte Carlo simulation
 - 4000 trials for each design concept

- VARG curves match those from Decision Analysis (as expected)

Conclusions

- Design concept ranking
 - Small House – defers & avoids costs
 - Big House – meets point estimate
 - Condo – hurt by seller closing costs

- Lattice analysis most helpful because it allowed expansion in any period
 - DA and simulation only allowed expansion in Yr 8

- Familiar now with mechanics of methods

- Proficient in Excel