REAL OPTIONS ANALYSIS: RUNWAY EXPANSION AT A NEW AIRPORT IN LISBON

Julia Nickel
December 2007
Class project in ESD.71
‘Engineering Systems Analysis for Design’
Massachusetts Institute of Technology
Problem background

- Currently single airport located in Lisbon, Portugal, cannot be expanded due to location in densely populated area
- Serviced approximately 12 mn passengers in 2006
- Projected traffic indicates capacity problems beginning in 2009 (Chevalier 2005)
- A new airport (NLA= new Lisbon airport) has been planned to be built since the early 90’s
- Traffic forecasts highly uncertain due to cyclicity of aviation industry and complexity of factors that determine traffic demand at an airport

Regional Map

National Map

Julia Nickel, ESD.71, Runway expansion at a new airport in Lisbon
Traffic demand as main source of uncertainty

Sources of uncertainty in traffic demand

- Internal: Development in Lisbon area (and Portugal as a whole) of population, average income, general economy, travel-intensive industries…

- External: development of travel-intensive industries of relevance for Lisbon/Portugal in other parts of the world, attractiveness of Lisbon/Portugal as destination for tourism, conferences, higher education, business; attractiveness as hub

- Runways are very often the bottleneck of capacity at airports

 Focus on runway systems in this analysis

 Exploration of flexibility in runway design

- Runway system in this analysis includes two parallel independent runways, excludes gates, terminals, and air bridges as possible capacity constraints

- Metric of uncertainty: number of passengers

 Benefits of system: Revenues created through landed airplanes
Fixed and flexible design

Fixed design
- 2 runways built immediately, total capacity of 159,870 landings/year
- Total construction cost of both runways $300mn
- Lifecycle = 25 years, costs paid back in equal rates over lifecycle
- Total annual capital cost of both runways $12mn
- Annual operating costs for both runways $4mn

Flexible design
- 1 runway built immediately, capacity of 79,935 landings/year
- Option at a cost of 50mn in year 0 buys the right to build a second runway in year 10
- Expansion can only happen in year 10, with capital costs being paid and additional capacity being available from year 10 on
- Construction cost, operating cost, lifecycle are the same as for fixed design, construction costs paid back during 25 years (hence a discounted rest cost of $1.6 mn needs to be paid after year 25 for the second runway, which is neglected in this analysis)
Runway data

Inputs derived from hypothetical aircraft mix data:

- Average capacity = 224 passengers/aircraft
- Average landing fee per aircraft = $400
- Average revenue per passenger = $1.78 (used to calculate revenues from met demand)

Inputs derived from external data sources:

- Assumed hourly capacity = 35 movements/hours (Wikipedia, Ota)
- σ = 19% per year (derived from monthly pax in 2005)
- Annual capacity = 79,935 landings (= ½ of total capacity)

Annual capacity = \# hourly movements $\times 16 \times 365 \times 0.85 \times (0.5 + 0.5 / \sigma) \times 0.5$

(De Neufville, Odoni (2003), p. 450-453)

Annual maximum of passengers carried
= 35,842,854 (2 runways)
= 17,921,427 (1 runways)

<table>
<thead>
<tr>
<th>Aircraft Mix</th>
<th>Avg. Capacity [pax]</th>
<th>MTOW [mt]</th>
<th>% Movements [% Total]</th>
<th>Revenue/Landing [$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B737-500</td>
<td>115.0</td>
<td>52.6</td>
<td>20.00%</td>
<td>$342.49</td>
</tr>
<tr>
<td>A320-200</td>
<td>162.0</td>
<td>73.9</td>
<td>30.00%</td>
<td>$342.49</td>
</tr>
<tr>
<td>B757-200</td>
<td>190.0</td>
<td>109.3</td>
<td>20.00%</td>
<td>$342.49</td>
</tr>
<tr>
<td>B747-400</td>
<td>382.0</td>
<td>398.3</td>
<td>30.00%</td>
<td>$533.53</td>
</tr>
</tbody>
</table>

ANA SA, Bolletim de Estatistica 2005

Julia Nickel, ESD.71, Runway expansion at a new airport in Lisbon
Two-stages decision analysis

- 3 growth modes (scenarios, ‘Sc’):
 - Base case: 4%
 - Optimistic growth: 10%
 - Pessimistic growth: 2%

- Two phases:
 - Phase 1: 10 years, at the beginning decision for fixed or flexible design must be made
 - Phase 2: 15 years, at beginning decision for or against expansion must be made

- Growth and revenue is calculated using the New Runway Model (Duane-Chambers, 2007)

- Assumptions for probabilities of growth scenarios, incorporating known evidence from several airports that indicate that airlines are attracted to facilities which can accommodate their growth most easily. (Bonnefoy, 2005)
Decision tree for fixed design

h/m/l = high/medium/low growth

Start

V = 15.53 mn

p(Sc 1) = 0.2

V = 19.86 mn

p(Sc 2) = 0.35

V = -6.19 mn

p(Sc 3) = 0.45

V = 44.16 mn

V = -10.88 mn

P(h) = 0.2 II -25.11 mn

P(m) = 0.35 II -20.97 mn

P(l) = 0.45 II 3.29 mn

P(h) = 0.2 II -13.32 mn

P(m) = 0.35 II -8.58 mn

P(l) = 0.45 II 26.36 mn

P(h) = 0.2 II 31.06 mn

P(m) = 0.35 II 37.30 mn

P(l) = 0.45 II 55.32 mn

Julia Nickel, ESD.71, Runway expansion at a new airport in Lisbon
Yes/No refers to the decision to expand/not expand
h/m/l= high/medium/low growth

Start (t=0)

V=31.66 mn

p(Sc 1) = 0.4

V=25.42 mn

p(Sc 2) = 0.3

V=35.91 mn

p(Sc 3) = 0.3

V=71.79 mn

Yes/No refers to the decision to expand/not expand
h/m/l= high/medium/low growth

V=14.39 mn

P(h)=0.2 II 4.24 mn

P(m)=0.35 II 8.38 mn

P(l)=0.45 II 23.58 mn

V=31.66 mn

P(h)=0.3 II 20.53 mn

P(m)=0.4 II 23.67 mn

P(l)=0.3 II 32.64 mn

V=33.50 mn

P(h)=0.2 II 27.43 mn

P(m)=0.35 II 32.21 mn

P(l)=0.45 II 37.20 mn

V=35.91 mn

P(h)=0.3 II 31.12 mn

P(m)=0.4 II 34.34 mn

P(l)=0.3 II 42.81 mn

V=71.79 mn

P(h)=0.2 II 65.89 mn

P(m)=0.35 II 68.31 mn

P(l)=0.45 II 73.03 mn

V=69.00 mn

P(h)=0.3 II 58.70 mn

P(m)=0.4 II 64.93 mn

P(l)=0.3 II 82.95 mn

Julia Nickel, ESD.71, Runway expansion at a new airport in Lisbon
Results from decision analysis

- Expected value is positive in both fixed and flexible case ($15.53mn and $31.66mn, respectively)

- **Optimal strategy**
 Flexible design, don’t expand in cases of 2% or 4% growth in phase 1, do expand in case of 10% growth

- The value of staying small makes a considerable difference between both designs

- Value increase through option = $31.66mn - $15.53mn = $16.13mn (option already considered in calculation)
Lattice model of probability

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>0.61</td>
<td>0.37</td>
<td>0.222</td>
<td>0.134</td>
<td>0.081</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
<td>0.48</td>
<td>0.434</td>
<td>0.350</td>
<td>0.265</td>
<td>...</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.16</td>
<td>0.283</td>
<td>0.342</td>
<td>0.345</td>
<td>...</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.062</td>
<td>0.149</td>
<td>0.225</td>
<td>...</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.024</td>
<td>0.073</td>
<td>...</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.010</td>
<td>...</td>
<td>0.038</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inputs

- \(p = 0.5 + 0.5(v/\sigma) \times \sqrt{\Delta T} = 0.61 \)
- \(u = \exp(\sigma \times \sqrt{\Delta T}) = 1.21 \)
- \(d = 1/u = 0.83 \)
- \(\sigma = 19\% \text{ per year} \) (from historical data)
- Growth rate \(v = 4\% \) (base case)
 (Through regression analysis of logarithmic historical data and forecast (1988-2050, ANA e Parsons FCG (2006)), fitted to growth model of the form \(\text{pax}(t) = A \times \exp(r \times t) \), \(R^2 = 0.95 \))
- Initial demand = 5.5 mn per year
 (roughly one third of what Portela is forecast to be serving in 2016, the assumed date of opening of NLA)

Julia Nickel, ESD.71, Runway expansion at a new airport in Lisbon
Lattice model of demand

<table>
<thead>
<tr>
<th>Year 0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>6.7</td>
<td>8.0</td>
<td>9.7</td>
<td>11.8</td>
<td>14.2</td>
<td>...</td>
<td>434.7</td>
<td>525.7</td>
<td>635.7</td>
</tr>
<tr>
<td>4.5</td>
<td>5.5</td>
<td>6.7</td>
<td>8.0</td>
<td>9.7</td>
<td>...</td>
<td>297.3</td>
<td>359.5</td>
<td>434.7</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>4.5</td>
<td>5.5</td>
<td>6.7</td>
<td>...</td>
<td>203.3</td>
<td>245.9</td>
<td>297.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>3.8</td>
<td>4.5</td>
<td>...</td>
<td>139.0</td>
<td>168.1</td>
<td>203.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>3.1</td>
<td>...</td>
<td>95.1</td>
<td>115.0</td>
<td>139.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>...</td>
<td>65.0</td>
<td>78.6</td>
<td>95.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values in $ mn

Probability distribution of demand for v=4%
Optimal expansion choice in flexible design

<table>
<thead>
<tr>
<th>Year 0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Ex. Option?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>460</td>
<td>554</td>
<td>633</td>
<td>691</td>
<td>720</td>
<td>714</td>
<td>673</td>
<td>607</td>
<td>526</td>
<td>439</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>365</td>
<td>440</td>
<td>499</td>
<td>533</td>
<td>538</td>
<td>508</td>
<td>445</td>
<td>361</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>200</td>
<td>267</td>
<td>320</td>
<td>354</td>
<td>360</td>
<td>334</td>
<td>272</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>65</td>
<td>123</td>
<td>170</td>
<td>200</td>
<td>205</td>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>-94</td>
<td>-37</td>
<td>15</td>
<td>57</td>
<td>84</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>-158</td>
<td>-105</td>
<td>-57</td>
<td>-16</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>-193</td>
<td>-141</td>
<td>-92</td>
<td>-49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>-201</td>
<td>-146</td>
<td>-93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>-184</td>
<td>-123</td>
<td>-144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

- Calculation of net revenues for 1 and 2 runways
- Calculation of value of being in each state in lattice
- Subtracting future value of option cost in year 10 from values of expanded case (future value of option cost in year 10 = $39.4 mn)
- Building lattice from maximum values of 1 or 2 runways in year 10, backtracking until present
- NPV = $460 mn

Values in $ mn

Julia Nickel, ESD.71, Runway expansion at a new airport in Lisbon
Results from lattice analysis

- Option value in base case is $422.6mn
- Flexible design is advantageous because cost for unused capacity does not occur
- Option value and decision for flexible design robust against different growth modes, as indicated by table below

Values in $ mn

<table>
<thead>
<tr>
<th></th>
<th>2%</th>
<th>4%</th>
<th>6%</th>
<th>8%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENPV (flexible)</td>
<td>274.4</td>
<td>420.9</td>
<td>564.5</td>
<td>697.5</td>
<td>813.4</td>
</tr>
<tr>
<td>ENPV(fixed)</td>
<td>20.9</td>
<td>1.7</td>
<td>20.57</td>
<td>45.1</td>
<td>70.5</td>
</tr>
<tr>
<td>Value of call</td>
<td>295.3</td>
<td>422.6</td>
<td>543.93</td>
<td>652.4</td>
<td>742.9</td>
</tr>
</tbody>
</table>
Concluding remarks

- **Design recommendation:** Flexible design turns out to be of considerable advantage
- This decision proves robust against different growth rates in the lattice analysis
- This indicates that the advantage of flexible design in runway construction lies in the cost saving while traffic demand does not require a second runway, not so much in the value of flexible reactions to external developments
- **Remarks:**
 This model, while seeking to use a reasonable capacity level, does not take congestion at the single runway into account that might make a second runway desirable earlier on
- Several important interactions, e.g. impact of availability of capacity and prime slots on airlines’ decisions to use NLA as a hub, are not considered here
Sources

