

Prospects for Wind Farm Installation in Wapakoneta, Ohio: An Initial Study on Economic Feasibility

Prepared by
Katherine Dykes
12/04/2007
ESD 71 – Prof. de Neufville

Bowling Green, Ohio Wind Farm

Content

- > Problem Description
- > Description of Uncertainty
- > Potential for Incorporating Flexibility: two options
 - Real Option 1: Small versus Large Wind Farm
 - Using Decision Tree Analysis
 - Real Option 2: Close Small wind farm if operation unprofitable
 - Using Binomial Tree Analysis
- > Discussion & Conclusions

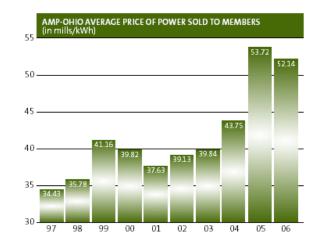
Problem Description

> Why wind in Wapakoneta?

- Two Year DOE Tall Tower Wind Assessment Study shows that wind speeds at Wapakoneta, Ohio site outperform all other sites tested including Bowling Green, Ohio where the first Ohio commercial-scale wind farm was installed in 2001
- Because Wapakoneta is a municipal utility, outside the jurisdiction of the large multi-state utility providers, pursuing a wind farm is more straightforward process
- In addition, the city owns a large body of land near the test site and the highway that would help enable wind farm installation, maintenance and visibility
- Finally, there is community interest from Wapakoneta officials for such a project and various local businesses would profit from investment in the project

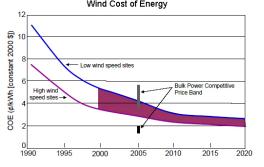
Problem Description

> What are the next steps?


- Following on the wind assessment study, other information is necessary prior to going ahead with such a largeinvestment project for the city
- Key to this is an economic feasibility study that incorporates:
 - project costs
 - offsets in electricity costs to the community
 - Regulatory incentives
- All of the above involve a large amount of uncertainty
- Any thorough economic feasibility study will accurately address these uncertainties
- This analysis will show a preliminary study of how to address such sources of uncertainty

Description of Uncertainty

- Three major sources of uncertainty beyond traditional economic factors:
 - Wholesale electricity price
 - Wholesale electricity sold to Wapakoneta sub-stations from AMP-Ohio; trend in electricity prices for past several years shown below¹
 - Calculated price drift for 10 year period is 5.07% and volatility is 9.31%



Description of Uncertainty

- Regulatory Incentives
 - Presently, there are a variety of incentives²:
 - Grants up to \$150,000 for a large commercial wind project
 - Production incentives of \$0.01/kWh
 - \$0.015/kWh production incentives as well as tax exemptions at the federal level
 - However, presence of incentives and changes to incentives in future periods are unknown (incentive value could increase or decrease)
- Installation and Maintenance Costs

Project Costs for Wind expected to fall slightly in coming years

but not by a large amount³:

² <u>http://www.dsireusa.org/library/includes/map2.cfm?CurrentPageID=1&State=OH&RE=1&EE=1</u>

³ <u>http://www.eere.energy.gov/windandhydro/windpoweringamerica/ne_economics.asp</u>

Description of Uncertainty

- > Dominant source of uncertainty of the above three sources is wholesale electricity price
 - Regulatory incentive value as compared to overall project costs likely to be small
 - Costs of projects not likely to change substantially in the future and collaboration with developers likely to provide a large amount of information to clarify this source of uncertainty
- > Wholesale electricity in recent years has been extremely volatile:
 - Due to fossil fuel price volatility, especially natural gas
 - In the future, potential for regulation on CO2 emissions could also cause significant increase in electricity prices
- Next step: analyze what effects the uncertainty in wholesale electricity projects could have on 1) project size and 2) continued wind farm operation after installation

- > Use a 2-stage decision tree analysis to look at the trade-off between upfront investment in large-scale (20 MW) versus small-scale (3 MW) wind farm
 - Below are project costs ignoring regulatory incentives and using cost estimates as provided by the Windustry model (see reference below)

Plan 1: large upfront investment for large-scale wind turbine farm				
26				
750 kW				
19.5 MW				
1,408,464.65				
20,000,000.00				
yes				
63,000.00				
1,638,000.00				
52.14				
1,909,371.02				
0.00				
0.00 per kWh				
0.08				
20,000,000.00				
0% Fed Bond Incentive				
	26 750 kW 19.5 MW 1,408,464.65 20,000,000.00 yes 63,000.00 1,638,000.00 52.14 1,909,371.02 0.00 0.00 per kWh 0.08			

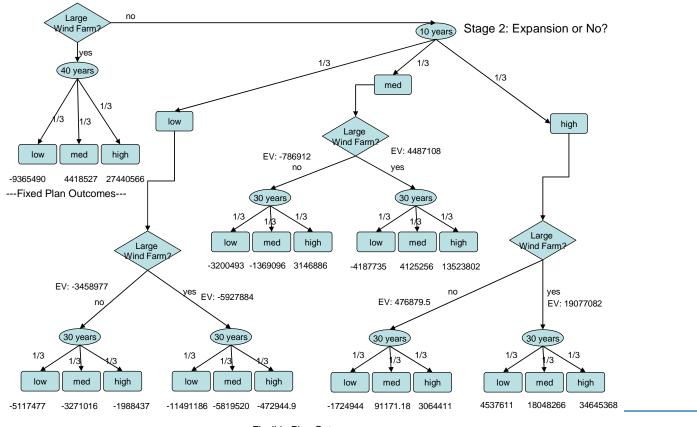
Plan 2: small upfront investment	tor small-scale \	wind turbine farm (scalable)
Turbine # / installation	4	
Size turbine	750	kW
Total MW	3	MW
Yearly kWh production / turbine	1,408,464.65	
Total Cost	5,700,000.00	
Economies of Scale?	no	
Maintenance Costs / MW	63,000.00	
Total Maintenance Costs	252,000.00	
Current Price per MWh	52.14	
Total Savings	293,749.39	
ODOD grant (150K per proj)	0.00	
Production fed / state (0.03 / kWh c	0.00	per kWh
Discount Rate	0.08	
NPV		
Amount Borrowed	5,700,000.00	
Interest Rate Available	0%	Fed Bond Incentive

Plan 2, small unfront investment for small scale wind turbing form (scalable)

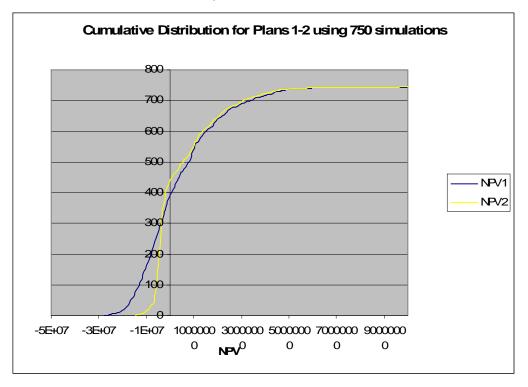
Project Cost Information:

MITesd

> Decision Tree model:


- Wholesale electricity prices projected using Geometric
 Brownian Motion model with drift 5.07% and volatility 9.31%
- Includes two options:
 - Upfront investment in small or large wind farm
 - Option in stage two to upgrade small to large wind farm
- 750 simulations performed to get expected economic results for all scenarios under decision tree

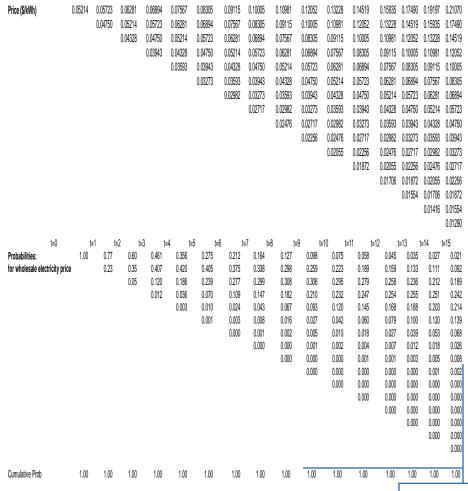
> Decision Tree Results, Graphical Form:


Stage 1: Large Wind Farm or Test Fleet?

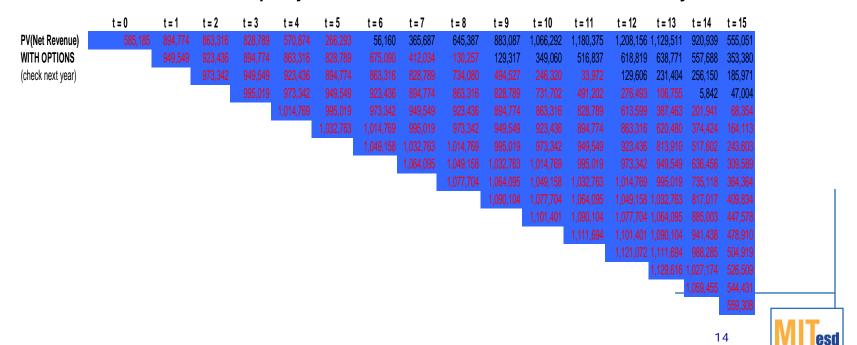
-----Flexible Plan Outcomes -----

> Decision Tree Results, VARG curves:

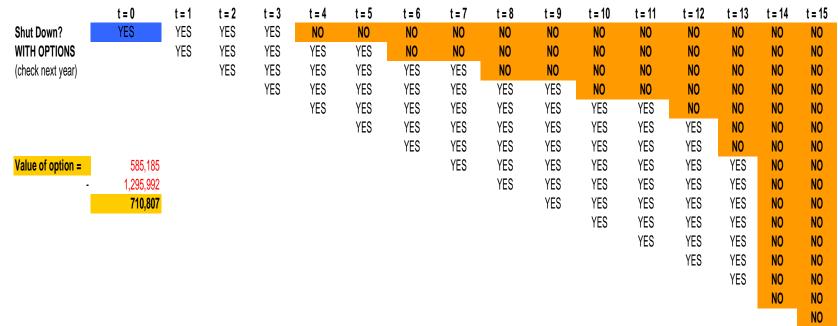
- > Results indicate that large economies of scale in project make small-wind farm project less attractive economically even after incorporating flexibility
- > However, the small-scale wind farm is effective at eliminating some of the downside risk since it requires less up front investment


	Plan 1 (Fixed / Big)	Plan 2 (Flex / Small)
Initial Capex	-\$20,000,000.00	\$5,700,000.00
Minimum NPV	-\$28,502,968.63	-\$15,006,328.03
Maximum NPV	\$100,829,161.90	\$97,604,899.62
Expected NPV	\$7,497,867.58	\$6,701,737.62

Real Option Analysis 2: Option to Close


- > Attempt to remedy economic performance of small-wind farm by including another option:
 - Close small wind farm and sell off turbines if wholesale electricity prices do not rise as expected
- > Pursue analysis using Binomial Tree Model
 - Using drift of 5.07% & volatility of 9.31%,
 - Upside factor = 1.0976
 - Downside factor = 0.9111
 - Upside probability = 0.7723

Real Option Analysis 2: Option to Close


- > Perform binomial tree analysis using above probability / price values and assuming:
 - Plant can be closed at any time
 - Turbines can be sold off to cover outstanding debt
 - Potential life of project in this case shortened to 15 years

Real Option Analysis 2: Option to Close

> Value of Option = \$710,807

- > However, even under unrealistic assumptions and using option to close, small wind-farm does not show positive NPV in 15 years
- > But, if performance in first few years for electricity is high, project does become attractive; this again highlights the importance of the trend in wholesale electricity prices on overall economic viability of the wind project

Discussion and Conclusions

- Initial analysis for a Wapakoneta wind project indicate that economies of scale are significant and a large-scale wind farm fares better than a small-scale wind farm with option for later expansion but requires substantially more investment
- This analysis leaves out regulatory incentives which may favor a small-scale wind farm due to percentage of costs covered being greater for a small-scale wind farm versus a large-scale wind farm
- > This analysis also relies on rudimentary estimates of project cost; collaboration with wind developers needed to validate assumptions here
- Overall, much more extensive analysis is needed in order to evaluate the economic feasibility of a wind farm in Wapakoneta; this analysis is meant only to show the importance of incorporating uncertainty and flexible design into any future analysis for such a project

