Motivation

To determine the value of imbedding flexibility in the production buy schedule of the proposed US Air Force KC-X tanker aircraft by using the principles of Real Options

- The current arrangement locks the United States Government (USG) into a long-term, deterministic financial agreement which fails to account for future uncertainty.
- The forces of uncertainty may prevent USG from acting upon future opportunities or responding to unforeseen demands and requirements.
- Flexibility may be added to this agreement by either delaying the purchase decision and/or allowing the USG to modify the production quantity.
Background: KC-X Tanker Program

- KC-X program is the first of three acquisition programs needed to replace the entire fleet of aging USAF KC-135 Stratotankers.
- Primary mission of the KC-X will be to provide aerial refueling to United States military and coalition aircraft.

Deterministic Production Schedule

- Effort Contracted to produce 179 aircraft
 – Worth $40B
 – Procured over a 15-20 year period

<table>
<thead>
<tr>
<th>FYXX</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy</td>
<td>Qty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Schedule should be predicated on bidders IMB and entrance criteria for LRIP

Retrofit Schedule

<table>
<thead>
<tr>
<th>FYXX</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy</td>
<td>Qty</td>
<td></td>
</tr>
</tbody>
</table>

Sources of Uncertainty

• Demand uncertainty
 – Dubious forecast of how many aircraft are needed
• Uncertainty in the price of jet fuel
 – Seismic shifts in the price of jet fuel
 – Affects long-term cost of operations

Exercising Options

• **Inflexible**: Purchase full lot of 179 aircraft at the given production rate
• **Flexible**: Purchase 79 Boeing 767 aircraft at the given production rate.
 – Re-evaluate decision to purchase remaining 99 based on oil prices and US government update to actual demand during the sixth fiscal year of production.
 – Following outcomes are possible in this scenario:
 ➢ Continue with purchase of 99 aircraft
 ➢ Purchase more than 99 aircraft
 ➢ Purchase less than 99 aircraft
Models

- Aircraft Cost Model
 - DAPCA IV computer model based on industry data
 - \(C_M = 11W_0^{0.921} \times \sqrt{0.621 \times Q^{0.799}} \)
- Fuel Cost Model
 - Geometric Brownian Motion (Stochastic process)
 - \(dS = \mu S dt + \sigma S dz \)
 - Regression analysis performed
- Demand Model
 - Affected by fuel cost
 - Conditional probabilities

<table>
<thead>
<tr>
<th>Fuel Cost</th>
<th>P(HD/FC)</th>
<th>P(MD/FC)</th>
<th>P(LD/FC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>1/6</td>
<td>1/3</td>
<td>1/2</td>
</tr>
<tr>
<td>Med</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>Low</td>
<td>1/2</td>
<td>1/3</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Conditional Probability of Demand in Light of Fuel Cost

149: High Demand= Original requirement +50%
99: Medium Demand= original demand
50: Low Demand=original demand-50%
99: = Original Demand

Operational Considerations

- Each aircraft will operate for 750 hours per year
- Each aircraft consumes 1722 gallons of jet fuel per hour
Decision Analysis

- Two-stage decision analysis
 - Fuel price at end of period 1 drives stage 2 decisions
- Results (Cost)
 - No option: $41.7B
 - Flexible: $39.2B
 - Savings: $1.5B

Lattice Analysis

- Binomial lattice framework
- Models the change in jet fuel price over time by considering the movement of the price at each time node
Lattice Valuation

<table>
<thead>
<tr>
<th>Price Range</th>
<th>Price Build Level Build</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>$2.27</td>
</tr>
<tr>
<td>MED</td>
<td>$4.27</td>
</tr>
<tr>
<td>HIGH</td>
<td>≥ $6.28</td>
</tr>
</tbody>
</table>

Value of flexibility = $5.3M cost savings

Conclusion

- The flexible options produced procurement and operational cost savings
 - On the order of 1 to 6%
 - For a system price tag near $40B, the potential savings are noteworthy
- Flexibility option merits greater consideration
 - Consider other units of measure (contractor profit, capability gained, etc)
 - Structured for mutual benefit (military, taxpayer, industry)