Power Plant Selection for a Mars Surface Mission

Ryan Schaefer December 9, 1999

Agenda

Summary

Background Recommendations

Analysis

Problem Formulation Cost Model Decision Analysis Sensitivity Analysis Technology Options

Conclusion

Background

- Human Mars Mission plans underway for FY 2011 mission
- Deceptively short technology planning horizon to baseline
- Complex, highly integrated system requirements
 - Transit to Mars
 - Surface Activities
 - Return to Earth
- Each technology must be independent and reliable

Technology development must be done in-house when possible

Surface Power System

- Surface power is critical to mission success
 - Life Support
 - Habitat
 - Science manifest
 - Transportation
 - Communication
- Two in-house options for Mars power plant design
 - Nuclear thermal
 - Advanced solar electric
- Choice driven by surface weather and crew power demand
 - Sunny conditions favor advanced solar power
 - Cloudy or cold weather favor nuclear

Recommendations

- If political climate remains the same,
 - Launch thermal nuclear power plant
 - Send a crew of 10 regardless of temperature
- Justification
 - Robust (all-terrain, small volume, dust storm resis't)
 - Nuclear can meet any demand, even during a nominally hot day
 - Solar is too expensive on cloudy days
 - Although solar EMV for sunny day is equal to nuclear EMV of a cold day, the nuclear is favored due to higher probability of a cold day (.7)

Recommendations (cont'd)

- If Congress rejects nukes before they are baselined
 - Launch advanced solar array technology
 - If the weather is sunny, send a crew of 10 people
 - If the weather is cloudy, send a crew of 5 people
- If Congress rejects nukes after they are baselined
 - Exercise "piggyback" option to gather weather info
 - Lobby executive / legislative branches for policy change
 - Channel R&D money to mitigate nuclear fears
 - Notify other systems of possible program delay

Problem Formulation

Development environment

- Congressional approval for Mars given: Two year R&D time
- Certification time eliminates in-house hybrid as an option
- Technology trades
 - Capability versus reliability
 - Mass versus safety
 - Risk versus cost

Operating environment

- · Mars has an atmosphere: sun and temp uncoupled
- Weather and power usage for the mission are uncertain
- Cost model must account for these unknowns

Cost Model

- Consists of fixed and variable
- Fixed costs distributed over mission duration
 - Research and development: higher for nuclear
 - Mass (i.e. launch costs): higher for solar
 - Fixed costs balance: \$7.7m
- Variable costs (\$) dependent upon nominal conditions of usage
 - Demand (kWe)
 - Efficiency (η)

Cost Model (cont'd)

- Two primary cost drivers (decision nodes)
 - Power plant performance
 - Crew size
- Total mission cost (TMC)

$$TMC = \left(\frac{\$}{kWe}\right) \left(\frac{kWe}{day}\right) (days)$$
f(demand, weather)
f(demand)
Fixed

- Once launched, no design changes possible
 - Weather at the site is unpredictable
 - Crew size provides some control over demand

Analysis Results

Based on nominal weather and demand

probabilities

Select nuclear at a cost of \$8,192,938

- Savings over solar electric: \$358,808
- Plan surface activities for a crew of 10

Sensitivity Analysis

Three Primary Sources of Sensitivity

- Weather prediction
 - How do deviations in the nominal values [P(hot)=.3, P(cloudy)=.5] affect the strategy?
- Demand prediction
 - Are power usage probabilities well-correlated to crew size?
- Congressional approval
 - How does the likelihood of congressional approval effect the decision to "go nuclear?"

Sensitivity Results

- Crew demand
 - Strategy insensitive to demand probabilities
 - High confidence in #'s (Apollo, Skylab databases)
 - P(demand) is same regardless of technology
- Technology choice
 - Cost of solar sensitive to P(sunny)
 - Nuclear decision
 - · Very robust to weather relative to solar
 - Highly sensitive to P(congressional approval)
 - Need options if congress rejects "all-nuclear" plan

Options

- Hybrid solar/nuclear power plant
 - Military technology in development
 - Acquire from NRO
- Send scout probe on fast transfer orbit for weather info
 - Planetary Orbiter: Climate data
 - Lander: Site weather data
- Leverage robotic precursors
 - Missions already in development by contractors
 - Manifest science instruments on orbiter or lander

Options Analysis

- Hybrid Option: \$6,500,000 acquisition cost
 - Nuclear component may be rejected by constituents
 - Dual-use technology may be regulated by Congress
 - Not "in-house" research and development
- In-house space craft too expensive
 - Orbiter: \$75 m Lander: \$125 m
 - Both options > Expected Value of Perfect Information

- Piggyback on mission currently under development
 - Orbiter: \$100,000 on U.S. 2001 Mars Orbiter Mission
 - Lander: \$200,000 on Russian 2001 Mars Lander

Conclusions

- Selecting a power plant for Mars exploration is critical to its success
- Nuclear (with piggyback option) supports "better, faster, cheaper" approach
 - Low Sensitivity to weather
 - No sensitivity to usage probabilities
 - Highly sensitive to
 Washington, DC policy makers
- · Solar is difficult to justify as a viable first choice

Back-up Slides

Decision Analysis

Plant efficiency for various surface conditions

Power Source	Sunny	Cloudy	Hot	Cold
Nuclear	N/A	N/A	90%	100%
Solar	100%	70%	N/A	N/A

• Probabilities of nominal conditions (over mission duration)

Sunny Day: 50% Cloudy Day: 50%Hot Day: 30% Cold Day: 70%

 Insufficient power (e.g. high demand, cloudy day) reduces the science capability by an amount equivalent to \$10,000 for every kWe short of demand

Decision Analysis (cont'd) Exploration Office

Demand probabilities for two possible crew sizes

	High	Medium	Low
Crew Size	(180 kWe)	(140 kWe)	
5 member	.3	.65	.05
10 member	.5	.4	.1

- "High demand" is slightly more likely with large crew
- Probability of "low demand" is larger for larger groups
 - Team work increases task efficiency
 - Reliance on robotic power reduced