
Engineering Systems Analysis for Design  ESD.71 

Massachusetts Institute of Technology  1 of 4 

Dynamic Programming Recitation 
 
Dynamic programming is a methodology to approach optimization problems that involve 
a non-convex feasible region. Each problem needs to be translated into the formalism 
developed for the methodology, which involves stages, states, return function, and 
cumulative return function. 
 
gi(Xi) - return function when state X is applied to stage i  
Stage – time (periods), space (locations, travel), sequence (logistics), portfolio of 
investments, redundant components in a system  
State X – set of possible choices for each stage (used in individual return function)  
K – one of the possible states (used in cumulative return function) 
fi(K) - cumulative return function: what is best way to “be in” or “arrive at” state (K) over 
first (i) stages?  
 
Both stages and states are sets. DP is applicable both when the return function is 
continuous and when it is discontinuous (step-wise). The recurrence formula gives the 
cumulative return function; it does not consider constraints.  
  
Questions to ask when approaching a problem:  

How can I best do __x__ in stage 1?  
How can I best do __x__ in stage 1 & 2?  
How can I best do __x__ in stage 1, 2, ... & i?  

  
Exercise 7.13 (modified) 
 
Consider a truck whose maximum loading capacity is 10 tons.  Suppose that there are 3  
different items, various quantities of which are to make up a load to be carried to a  
remote geographical area.  Suppose we wish to maximize the value of what the truck  
carries to the inhabitants, given the following weights and values of the four items.  
 

Item Weight Value 
1 3 tons $5 
2 4 tons $7 
3 5 tons $8 

 
a) Find the optimal solution by dynamic programming.  
b) Write the recurrence formula for this problem  
c) Define the assumptions of dynamic programming. 
 
Solution 
 
a) This is a non-sequential problem, so it does not matter how the stages are organized. 
Here the three stages are taken as each item category that we can load on the truck. There 
are three stages (i = 1, 2, 3). In stage 1, we consider loading only item 1. In stage 2, we 
consider loading items 1 and 2, and in stage 3, items 1, 2, and 3. The states (Xi) are the 



Engineering Systems Analysis for Design  ESD.71 

Massachusetts Institute of Technology  2 of 4 

amount of units of each item loaded on the truck. The return function gi(Xi) gives the 
total value in $ that can be transported, given the physical constraint of 10 tons the truck 
can carry. This constraint also limits the total value we can get by combining different 
items in different amounts. 
 
The following table shows the return function depending on the amount of each item as if 
loaded separately. The value is determined by multiplying the number of units of each 
item and the value associated with it. 
 

Amount 
of item i 

Return function gi(Xi) 

 Stage i = 1 Stage i = 2 Stage i = 3 
0 $0 (0 tons) $0 (0 tons) $0 (0 tons) 
1 $5 (3 tons) $7 (4 tons) $8 (5 tons) 
2 $10 (6 tons) $14 (8 tons) $16 (10 tons) 
3 $15 (9 tons) Beyond 10 tons constraint Beyond 10 tons constraint 

 
The cumulative return function is:  
 

fi(K) = max[gi(Xi) + fi-1(K-Xi)]. 
 
Note that this function is particular to this optimization problem, and varies from one 
problem to the other. In some cases, the function may involve minimization of a given 
quantity, so the cumulative return function is min[*]. In this problem, this function means 
that for a given number of items loaded on board, we find the maximum value we can 
obtain by loading a certain number of units of a given item (up at the given stage), given 
the maximum value obtained by loading units of the previous item. For each stage, we 
evaluate all possible amounts of units that can be loaded on board, subject to the 10 tons 
constraint. Since no more than 3 units of any item can be loaded, K = 0, 1, 2, or 3. 
 
For the first stage, the cumulative function is equal to the return function: f1(K) = g1(K) 
 
f1(0) = $0 (0 tons) f1(1) = $5 (3 tons) f1(2) = $10 (6 tons) f1(3) = $15 (9 tons) 
 
For this stage, there is only one way of boarding 0, 1, 2, or 3 units of item 1. 
 
For the second stage, the cumulative function is: f2(K) = max[g2(X2) + f1(K-X2)] 
 
f2(0)  = max (g2(0) + f1(0 – 0) = $0 
 

 There is only way to get $0 by combining the 2 first items, which is by having 
none of both. 

 
f2(1)  = max [g2(1) + f1(0), g2(0) + f1(1)] = max[$7 + $0, $0 + $5] = $7 (4 tons) 
 



Engineering Systems Analysis for Design  ESD.71 

Massachusetts Institute of Technology  3 of 4 

 Here, X2 takes all possible states of item 2 on board the truck, which is either 0 or 
1. K = 1 remains the same in our evaluation of the possible combinations of 
having a total of 1 unit on board. 

 The possible ways of having 1 item on board is to have 1 unit of item 1 and 0 unit 
of item 2, or 0 unit of item 1 and 1 unit of item 2. 

 The most value is obtained by having 1 unit of item 2, which weighs 4 tons and 
provides $7 of value. 

 
f2(2)  = max[g2(2) + f1(0), g2(1) + f1(1), g2(0) + f1(2)]  

= max[$14 + 0, $7 + $5, $0 + $10]  
= $14 (8 tons, 2 units of item 2) 

 
 This lists all the possibilities of having 2 units on board the truck. The most value 

is obtained by having 2 units of item 2, with a weight of 8 tons and $14. 
 
f2(3)  = max[g2(3) + f1(0), g2(2) + f1(1), g2(1) + f1(2), g2(0) + f1(3)] 

= max[$0 (> 10 tons), $0 (> 10 tons), $7 + $10 (10 tons), $0 + $15 (9 tons] 
= $17 (10 tons, 1 unit of item 2 and 2 units of item 1) 

 
For the third stage, the cumulative function is: f3(K) = max[g3(X3) + f2(K-X3)] 
 
f3(0)  = max (g3(0) + f2(0 ) = $0 
 
f3(1)  = max [g3(1) + f2(0), g3(0) + f2(1)]  

= max[$8 + $0, $0 + $7]  
= $8 (5 tons, 1 unit of item 3) 
 

f3(2)  = max[g3(2) + f2(0), g3(1) + f2(1), g3(0) + f2(2)]  
= max[$16 + 0, $8 + $7, $0 + $14]  
= $16 (10 tons, 2 units of item 3) 

 
f3(3)  = max[g3(3) + f2(0), g3(2) + f2(1), g3(1) + f2(2), g3(0) + f2(3)] 

= max[$0 (> 10 tons), $0 (> 10 tons), $0 (> 10 tons), $0 + $17 (10 tons] 
= $17 (10 tons, 1 unit of item 2 and 2 units of item 1) 

 
Therefore, the best policy is to take 2 units of item 1 ($10, 6 tons), and 1 unit of item 2 
($7, 4 tons) for a total maximum value of $17 and 10 tons load. 
 
b) As mentioned above, fi(K) = max[gi(Xi) + fi-1(K-Xi)]. 
 
c) The assumptions for dynamic programming are: 

a. monotonicity, such that improvements in each return function lead to 
improvements in the objective function, and 
b. separability, so that each return function is independent. 

 
 



Engineering Systems Analysis for Design  ESD.71 

Massachusetts Institute of Technology  4 of 4 

How does dynamic programming reduce the number of combinations to evaluate?  
 
Have a look at the decision tree in Excel file DPtree-7.13.xls. The yellow paths are those 
that are explored in the dynamic programming process, the black ones are pruned out in 
the process. Those paths correspond to the cumulative return functions explored through 
the process. Note that other paths are systematically pruned out and not shown in the tree: 
the paths providing a load higher than the 10 tons constraint. Therefore, dynamic 
programming is very efficient at reducing the number of possible paths to explore in a 
given combinatorial problem. 
 
How does dynamic programming relate to the decision analysis performed using the 
binomial model of copper price? 
 
In the binomial lattice decision analysis example, the stages, levels, return functions, and 
cumulative return functions can be considered as follows: 
 
Stages: year from 0 to 6. 
 
States or levels Xi: outcome price of copper in each year as given by the lattice 
 
Return function gi(Xi) = total benefits at each price level (or state) Xi for a given year (or 
stage) i.   
 
Cumulative fi(K) = expected return for a given state given the expected benefits in the 
subsequent year, taking advantage of the option to abandon the project to maximize 
profit, plus the benefits from the current year. 
 
Note that dynamic programming problems can be solved forward looking for sequential 
problems or backward looking when used for options analysis, as in this particular 
example. 


