Exercise 2.6

Question

2.6. Production Function III
As 2.4 (a), for: \(Z = 2 \log_e X + 4 \log_e Y \)

Solution from Manual

\[
\begin{align*}
MP_x &= \frac{2}{X} & MP_y &= \frac{4}{Y} \\
MRS &= -\frac{MP_x}{MP_y} = -\frac{2/X}{4/Y} = -\frac{Y}{2X}
\end{align*}
\]

RTS: As \(X \) and \(Y \) double, \(Z \) increases by \(6 \log_e 2 \). Whether this represents increasing or decreasing RTS depends on the level of \(Z \).

Additional Notes

\[
\begin{align*}
MP_x &= \frac{\partial Z}{\partial X} = \frac{2}{X} \\
MP_y &= \frac{\partial Z}{\partial Y} = \frac{4}{Y}
\end{align*}
\]

\[
\begin{align*}
MRS &= \frac{\Delta Y}{\Delta X} = -\frac{MP_x}{MP_y} = -\frac{2/X}{4/Y} = -\frac{Y}{2X}
\end{align*}
\]

Note: it does not matter whether MRS is done as \(\Delta Y/\Delta X \) or \(\Delta X/\Delta Y \). The question is only to be consistent in the calculations.

In this case, we cannot use exponents to determine the RTS. Let’s see what happens to \(Z \) as inputs double:

\[
\begin{align*}
X = Y = 1 & \Rightarrow Z = 2 \ln(1) + 4 \ln(1) = 6 \ln(1) = 0 \\
X = Y = 2 & \Rightarrow Z = 6 \ln(2) = 4.16 \\
X = Y = 4 & \Rightarrow Z = 6 \ln(4) = 8.32 \\
X = Y = 8 & \Rightarrow Z = 6 \ln(8) = 12.48
\end{align*}
\]

As inputs changes double from 2 to 4, there is just about constant RTS since the output \(Z \) nearly doubles. As inputs double again from 4 to 8, \(Z \) does not double, and there is
decreasing RTS. Therefore, we see that RTS depends on the values chosen for X and Y, and does not always provide the same kind of RTS.