ESD.70J Engineering Economy

Fall 2008
Session One

Michel-Alexandre Cardin – macardin@mit.edu
Prof. Richard de Neufville – ardent@mit.edu

Today’s class outline

1. Introduction
2. Course outline and philosophy
3. About Excel
4. Session 1 – base case construction and sensitivity analysis
About this class

- ESD.70 – Excel modeling
- Learn enough Excel to:
 - Appreciate the power of Excel
 - Gain confidence in own Excel modeling prowess
 - Prepare for ESD.71

Course website

http://ardent.mit.edu/real_options/ROcse_Excel_latest/Excel_Classes.html

- All files posted on the web
 - Ask for a CD if you cannot connect
Other courses

• More about uncertainty and flexibility in ESD.71 – Engineering Systems Analysis for Design
 – ESD.70 provides necessary knowledge of Excel for ESD.71
 – Introduction of advanced Excel techniques
• Want more → consider ESD.72 (Engineering Risk Analysis) and ESD.762 (Systems Optimization)

This class is:

• Informal:
 – Please ask questions at any time - A question not asked is a waste of your tuition money!
 – Compare notes/help each other
• Theoretically easy going:
 – I'll cover a few relevant theories – you do NOT have to learn theory to benefit from this class
 – Just learn how to use them in Excel
• Take it for credit, or attend to learn/have fun
• For credit -- no tests – only a final assignment!
Course Outline

Four (4) recitation-style sessions:
1. NPV, Data Tables, and sensitivity analysis – today
2. Monte Carlo simulations
3. Modeling uncertainty with common stochastic models
4. Analyzing the system in the context of flexibility + other advanced topics

Course Materials

- Excel spreadsheets
 - ESD70session# -1.xls : setup before the class
 - ESD70session# -2.xls : reflects all the work done in class
 - Do the exercises with me → the only way to learn
 - Cells marked as are for you to fill
 - Refer to the ESD70session# -2.xls to validate your work
- Lectures in PDF
Good Habits

- **Help each other:**
 - Introduce yourself to your neighbors ... now!
 - It’s late in the day and everyone is liable to tune-out intermittently. When you do:
 - Check with your neighbor to catch-up
 - Ask me – please do!
 - Look-up solutions in ESD70session#-2.xls file
 - Help your neighbor and he/she will help you
 - Better than Facebook to meet people...

Course Philosophy

- Decision-making with an eye towards the future can be approached from two strategic directions:
 - **Deterministic** – improving forecast (and making the best decision based on the probabilities of the expected outcomes)
 - **Dynamic** – admitting that the forecast is likely to be wrong (trading-off suboptimal near-term decisions for the flexibility to delay longer-term commitment until the uncertainties resolve or the forecasts improve)

- Exercises built around analyzing the case of “Big vs. Small”
Human (in-)ability to forecast

Heavier-than-air flying machines are impossible.
Lord Kelvin – British Mathematician, Physicist, and President of the British Royal Society, c. 1895

Everything that can be invented has been invented.
Charles H. Duell – Commissioner of the U.S. Patent Office, 1899

Reagan doesn’t have the presidential look.
United Artists Executive – dismissing Ronald Reagan for the starring role in the movie of THE BEST MAN, 1964

… weather … oil supply … stock market …

Modeling with dynamic mentality

• We cannot ignore the intrinsic uncertainty of the future → DYNAMIC mentality in decision-making to the rescue
• Excel is a decent tool for decision analysis
• We teach how to unleash the power of Excel to model in a dynamic setting
Why Excel?

- Seems too simple …
- Why not something more exotic, like MatLab, SAS, C++, etc?
- Excel is a LOT more POWERFUL than you think
- Excel is ubiquitous
- Excel forces you to build your models at a granular level – great for learning the nuts and bolts
- Knowledge of Excel is assumed in ESD.71 and in many real-world modeling situations
- Excel models are relatively easy to explain, understand and debug

Why not Excel

- It will crash on you
 - Not if, but when…
- Performance limitations
- Certain functionality constraints
 - It will take you VERY far, but at some point you may need to get really serious
Session one – Big vs. Small

- Objectives:
 - Good spreadsheet setup habits to facilitate sensitivity analysis
 - Charts
 - One-way/Two-way Data Tables
 - Goal Seek

Proper spreadsheet setup

- Programming/modeling → debugging
- Sensitivity analysis requires input changes

Good habits that will make your life easier:
- Enter inputs in a separate area or a sheet
- Set up the calculations by formulas linked to entries => NEVER HARD CODE INPUTS
Net Present Value (NPV) primer

- NPV = PV (Cash Inflows) - PV (Cash Outflows)

\[
NPV = \sum_{t=0}^{T} \frac{CF_t}{(1+r)^t}
\]

NPV > 0 \implies \text{valuable project}

‘r’ reflects risk of project, expressed as required rate of return. Also called discount rate or opportunity cost of capital. It is a “translation factor” between present and future money.

Set up NPV base case

Open ESD70session1-1.xls

(we have saved you the joy of manually entering the data)

http://ardent.mit.edu/real_options/ROcse_Excel_latest/ESD 70 2008/ESD70session1-1.xls
Big vs. Small setup

- Building a computer plant
- Deterministic demand projections for years 1, 2 and 3 are 300,000, 600,000, and 900,000 respectively
- No sales in year 4 or thereafter
- Plan A – a big plant; Plan B – one small plant each year;
- Plants take a few months to construct
- Big plant capacity of 900,000 with capital cost of $900 million
- Each small plant capacity of 300,000 with capital cost of $300 million
- No salvage value for Plan A; $300 million salvage value for Plan B
- Discount rate for Plan A is 9%, and 8% for Plan B
- The company will sell each computer for $2,000
- Variable cost for Plan A is $1,280 due to economies of scale; Variable cost for Plan B is $1,500
- See “Entries” Worksheet...

Worksheet for Plan A

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of plants</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Capacity</td>
<td>900</td>
<td>900</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Demand</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Production</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Unit Price (Thousand dollar)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Revenue (Million dollar)</td>
<td>1200</td>
<td>1800</td>
<td>1200</td>
<td>1800</td>
</tr>
<tr>
<td>Unit Variable Cost (Thousand dollar)</td>
<td>1.28</td>
<td>1.28</td>
<td>1.28</td>
<td>1.28</td>
</tr>
<tr>
<td>Variable Cost (Million dollar)</td>
<td>768</td>
<td>1152</td>
<td>768</td>
<td>1152</td>
</tr>
<tr>
<td>Investment (Million dollar)</td>
<td>900</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salvage (Million dollar)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Net value (Million dollar)</td>
<td>-900</td>
<td>432</td>
<td>648</td>
<td>0</td>
</tr>
<tr>
<td>Discount Factor @ 9.0%</td>
<td>0.84168</td>
<td>0.772183</td>
<td>0.756104</td>
<td>0.741145</td>
</tr>
<tr>
<td>Present Value (Million dollar)</td>
<td>-900.0</td>
<td>363.6</td>
<td>500.4</td>
<td>500.4</td>
</tr>
<tr>
<td>NPV (Million dollar)</td>
<td>162.7</td>
<td>500.4</td>
<td>500.4</td>
<td>500.4</td>
</tr>
</tbody>
</table>

Don’t worry, we’ll go through this just now...
Worksheet for Plan A

<table>
<thead>
<tr>
<th>Year</th>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of plants</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Capacity</td>
<td>900</td>
<td>900</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Unit Price (Thousand dollar)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Revenue (Million dollar)</td>
<td>600</td>
<td>1200</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Unit Variable Cost (Thousand dollar)</td>
<td>1.28</td>
<td>1.28</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Variable Cost (Million dollar)</td>
<td>384</td>
<td>768</td>
<td>1152</td>
<td></td>
</tr>
<tr>
<td>Investment (Million dollar)</td>
<td>900</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Salvage (Million dollar)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Net value (Million dollar)</td>
<td>-900</td>
<td>216</td>
<td>432</td>
<td>648</td>
</tr>
<tr>
<td>Discount Factor @ 9.0%</td>
<td>1</td>
<td>0.917431</td>
<td>0.84168</td>
<td>0.772183</td>
</tr>
<tr>
<td>Present Value (Million dollar)</td>
<td>-900.0</td>
<td>198.2</td>
<td>363.6</td>
<td>500.4</td>
</tr>
<tr>
<td>NPV (Million dollar)</td>
<td>162.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculate NPV:

\[NPV = \sum_{t=0}^{n} \frac{CF_t}{(1+r)^t} \]

Where:
- \(CF_t \) is the cash flow at time \(t \)
- \(r \) is the discount rate
- \(n \) is the number of periods

Inputs

- Year
- Number of plants
- Capacity
- Demand
- Production
- Unit Price (Thousand dollar)
- Revenue (Million dollar)
- Unit Variable Cost (Thousand dollar)
- Variable Cost (Million dollar)
- Investment (Million dollar)
- Salvage (Million dollar)

Calculations

- Net value (Million dollar)
- Discount Factor @ 9.0%
- Present Value (Million dollar)
- NPV (Million dollar)

Solution

Let's now fill the yellow spaces together...

Give it a try!

Check with your neighbors...

Check the solution sheet...

Ask me questions...
Worksheet for Plan B

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of plants</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Unit Price (Thousand dollar)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Revenue (Million dollar)</td>
<td>600</td>
<td>1200</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Unit Variable Cost (Thousand dollar)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Variable Cost (Million dollar)</td>
<td>450</td>
<td>900</td>
<td>1350</td>
<td></td>
</tr>
<tr>
<td>Investment (Million dollar)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Salvage (Million dollar)</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net value (Million dollar)</td>
<td>-300</td>
<td>-150</td>
<td>0</td>
<td>750</td>
</tr>
<tr>
<td>Discount Factor @ 8.0%</td>
<td>1</td>
<td>0.925926</td>
<td>0.857339</td>
<td>0.793832</td>
</tr>
<tr>
<td>Present Value (Million dollar)</td>
<td>-300.0</td>
<td>-138.9</td>
<td>0.0</td>
<td>595.4</td>
</tr>
<tr>
<td>NPV (Million dollar)</td>
<td>156.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion?

- Which plan is better?
 - Plan A: $162.1M OR;
 - Plan B: $156.5M

- Express this finding as the difference between NPV\textsubscript{A} and NPV\textsubscript{B}
 - In cell D31, type “=Plan A!C16-Plan B!C16”
 - If positive, Plan A is better; if negative, Plan B is better
 - We’ll use this in a couple seconds…
Few Excel tricks

- Working with multiple sheets – referencing fields across sheets and files: “=Entries!C9”
- Entering Series
 - Down…
- ‘$’ fixed cell references

Sensitivity Analysis

- With the “Big vs. Small” analysis, a manager may want to know about:
 - Impact of changing the discount rate for Plan B to find the “best plan” between A and B
 - Impact of simultaneous changes in both plans’ variable costs on the “best plan”
Tools for Sensitivity Analysis

• Data Tables (1- and 2-way)
 – What Excel was presumably invented for…
• Charts
• Goal seek

Data Tables

• Use Data Tables to see how different input values affect the output
• Data Tables provide a shortcut for calculating, viewing and comparing multiple versions in one calculation (what-if scenarios or simulations)
• Two types of Data Tables:
 – One-way Data Tables: evaluate how changes in one input variable effect the output
 – Two-way Data Tables (a matrix): evaluate how changes in two input variables effect the output
One-way Data Table

• Step 1: Create list of relevant input values (Plan B discount rates)
 – Either down a column (column-oriented) or across a row (row-oriented)
 – Varying discount rate for Plan B from 10.0% to 8.0%
 – Incremental step 0.1%

<table>
<thead>
<tr>
<th>Plan B discount rate</th>
<th>NPV_A - NPV_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0%</td>
<td></td>
</tr>
<tr>
<td>9.9%</td>
<td></td>
</tr>
<tr>
<td>9.8%</td>
<td></td>
</tr>
<tr>
<td>9.7%</td>
<td></td>
</tr>
</tbody>
</table>

• Step 2: Enter the output formula for NPV “=Plan A'C16-'Plan B'C16” in Cell D40:
 – If Data Table is column-oriented, output is in row above the first value and one cell to the right of the column of values

• Cells holding output values reference to cells in the model
One-way Data Table

- If the Data Table is **row-oriented**, type the formula in the column to the left of the first value and one cell below the row of values.

One-way Data Table (Cont)

- **Step 3: create new output values**
 - Select the range of cells containing the formulas and values (no labels!)
 - Go to “Data” menu, select “Table”
 - Reference **Column input cell** to the input variable whose value Excel varies as it iterates through the Data Table (here Plan B discount rate)
 - If row-oriented, type the cell reference for the input cell in the “Row input cell” box
 - Finally, click “OK” (then press F9)
 - This calculates the delta of $NPV_A - NPV_B$ for each discount rate for Plan B
 - Keeps discount rate for Plan A constant at 9%
More Excel tricks

- **ISSUE:** Reference “input cell” MUST BE on the same sheet as the data table
- **SOLUTIONS:**
 - Insert Data Table on the Entries sheet OR
 - Establish a reference cell on the Data Table sheet referencing the input variable (worked for older Excel versions)
- Once you create a Data Table, you can then copy/paste it onto another sheet, as done in sheets “One-way Data Table” and “Two-way Data Table”

Modifying Data Tables

- You can change the input values down the left-hand column of the Data Table. The Data Table recalculates automatically
- You can NOT change the matrix size. If you want to extend the range of input values or change the number of output variable columns, you’ll need to erase and rebuild the Data Table
- You can explore Data Table with output calculation beyond those in your model
Give it a try!

Check with your neighbors…

Check the solution sheet…

Ask me questions…

Two-way Data Tables

• Same idea as One-way, only now we explore output dependency on 2 inputs
• Expect a 2-D matrix
Two-way Data Tables

- **Step 1**: Create one column and one row varying input values for each of the inputs
 - Plan A variable cost varies from $1,200 to $1,450; for Plan B from $1,400 to $1,600
 - Incremental step $100

<table>
<thead>
<tr>
<th></th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan A</td>
<td>1200</td>
<td>1300</td>
<td>1400</td>
<td>1500</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1300</td>
<td>1400</td>
<td>1500</td>
<td>1600</td>
</tr>
<tr>
<td>Plan B</td>
<td>1200</td>
<td>1300</td>
<td>1400</td>
<td>1500</td>
<td>1600</td>
</tr>
</tbody>
</table>

- **Step 2**: Enter the output formula in the upper-left corner of the data table matrix

- **Step 3**: Select the range of cells that contains the formula and input values

<table>
<thead>
<tr>
<th></th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan A</td>
<td>1200</td>
<td>1300</td>
<td>1400</td>
<td>1500</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1300</td>
<td>1400</td>
<td>1500</td>
<td>1600</td>
</tr>
<tr>
<td>Plan B</td>
<td>1200</td>
<td>1300</td>
<td>1400</td>
<td>1500</td>
<td>1600</td>
</tr>
</tbody>
</table>
Two-way Data Tables

- Step 4: Menu “Data” → Table
 - In the **Row input cell** and **Column input cell** boxes, enter corresponding output formula input references
 - Find out the corresponding delta of \((\text{NPV}_A - \text{NPV}_B) \) for each pair of variable costs for Plan A and B

<table>
<thead>
<tr>
<th>5.66</th>
<th>1.40</th>
<th>1.41</th>
<th>1.42</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20</td>
<td>-26.98631191</td>
<td>-11.92001104</td>
<td>3.14629</td>
</tr>
<tr>
<td>1.21</td>
<td>-41.73833677</td>
<td>-26.6720359</td>
<td>-11.6057</td>
</tr>
<tr>
<td>1.22</td>
<td>-56.49036163</td>
<td>-41.42406076</td>
<td>-26.3578</td>
</tr>
<tr>
<td>1.23</td>
<td>-71.24238649</td>
<td>-56.17608562</td>
<td>-41.1098</td>
</tr>
<tr>
<td>1.24</td>
<td>-85.99441135</td>
<td>-70.92811048</td>
<td>-55.8618</td>
</tr>
</tbody>
</table>

Conditional formatting

- You can vary text appearance with values
- Step 1: Enter value range for varying number appearance (i.e.: min/max)
- Step 2: Select the target formatting range
- Step 3: Define formatting rules: “Format” → “Conditional Formatting”
Give it a try!

Check with your neighbors…

Check the solution sheet…

Ask me questions…

Excel charts

- With the sensitivity analysis, we’ve generated a lot data for ‘what-if’ scenarios

- Would it be great to generate a visual aid to summarize this information?
Excel charts

• Charts transform data into a graphical illustration, useful for displaying analysis results

• Create a chart using the Chart Wizard
 – Click “Chart…” under “Insert” menu

The Chart Wizard

• There are 4 main steps in using the Chart Wizard:
 – Step 1: Chart Type = Bar Graph, Scattered Graph, Pie Chart…
 – Step 2: Source Data = data range of various series
 – Step 3: Chart Options = Titles, Axes, Legend, Gridlines, etc
 – Step 4: Chart Location = object or chart sheet
Excel charts

Plot the curve of $NPV_A - NPV_B$ as a function of discount rate for Plan B...

Chart example

- Step 1: Chart Type
 - XY(Scatter) with data points connected
- Step 2: Source Data
- Step 3: Chart Options
 - Titles, Legend, etc...
- Step 4: Chart Location
 - As object in “Entries”
Give it a try!

Check with your neighbors…

Check the solution sheet…

Ask me questions…

Goals Seek

- Vary (find) input value until the output equals a desired target value
- Click “Goal Seek” under “Tools” menu
 - “Set Cell”: cell whose value is changed to target value
 - “To Value”: desired target value
 - “By Changing Cell”: precedent cell value affecting desired output
Goal Seek Example

• Determine the maximum variable cost of Plan A such that Plan A is favored, given the variable cost of Plan B is $1,500
 – Set Cell: NPV_A - NPV_B (or C3 in “Goal Seek” tab)
 – To Value: 0
 – By Changing Value: variable cost for Plan A (or D18 on “Entries” tab)

• Result?
 – $1,283.83/unit

Additional note: NPV function

• You may use NPV(rate,value1,value2, ...)
 – “rate” is the discount rate for one time period
 – “value1”, “value2”, ... are the value you wish to discount
 – Excel’s NPV function assumes that all cash flows occur at the END of their time period. In other words, “value1” will be discounted at the rate of 1/(1+r)

• See sheet...
Additional note: Text function

- When you change an input variable, you may wish that value to be propagated through a text label:

 Discount Factor @ 9.0%

Additional note: Text function

- Text Functions used: ="Discount Factor @ "&TEXT(Entries!C3,"##.0%")
- "&": Connects, or concatenates, two values to produce one continuous text value
- “TEXT” function: Converts a value to text in a specific number in a specific format
 - #: format code for displaying only significant digits and does not display insignificant zeros
 - 0: format code for displaying insignificant zeros if a number has fewer digits than there are zeros in the format
Questions?

Comments?

Suggestions?

Summary

- Excel is a powerful decision analysis tool
- We’ve just scratched the surface
- Good habits will make your life easier
 - Separate input variables, no hard coding
- Use Data Tables for sensitivity analysis
- One picture is worth a thousand words
 - Excel charts
- Reach a target value using Goal Seek
Want to learn more Excel?

- MS Excel 2003 training:
- MS Excel 2007 training:

Next class...

With the deterministic base case NPV sheet finished, we proceed to Monte Carlo simulations

CRITICAL PART OF THE COURSE

See you tomorrow!