A Screening Model to Explore Planning Decisions in Automotive Manufacturing Systems under Demand Uncertainty

Yingxia Yang

Committee:
Prof. Randolph Kirchain, Prof. Richard de Neufville,
Prof. Oliver de Weck, Dr. Richard Roth

ESD 71., Nov 12, 2009

Outline

What am I doing? (Research Question)
- How to design large scale and complex manufacturing systems so that they perform well under demand uncertainty

How am I doing it? (Research method)
- A screening model + an evaluation model
 - Screening model → to identify good decision candidates
 - Evaluation model → to extensively examine decision candidates

How does it work? (Method application)
- Case study in Automotive body assembly system planning

Motivation

- Large complex engineering systems, such as automotive manufacturing systems, are:
 - Capital intensive
 - Require long lead time to develop
 - Difficult to change
 - Demand uncertainty
Motivation(2): Demand Uncertainty

- Macroeconomic Fluctuations
- Shifting Consumer Preferences
- Incorrect Predictions

Motivation

- Large complex engineering systems, such as automotive manufacturing
 - Capital intensive
 - Require long lead time to develop
 - Difficult to change
- Demand uncertainty
 - Macroeconomic change
 - Shifting consumer preference
 - Incorrect prediction, etc.

How to design the systems so that they can perform well under demand uncertainty?

Motivation(3): Multiple sources of flexibility

- System architecture
 - Product to plant allocation (Process flexibility)
 - Capacity
- Technology
 - Tooling Technology
 - Equipment automation
- Operation
 - Shifts selection
 - Overtime operation
 - Inventory

Strategic Planning Decisions
(Strategic Flexibility)

Operational Decisions
(Operational Flexibility)
Research Questions

- For large complex manufacturing systems, given
 - Demand uncertainty
 - Multiple sources of flexibility

- How to design these systems so that they can perform well under uncertainty?
 - What is the impact of considering demand uncertainty on strategic decision making?
 - What is the impact of considering operational flexibility?
 - How to identify good design candidate in a large design space?

Research Scope

- System architecture
 - **Product to plant allocation**
 - **Capacity**
 - Technology
 - Tooling Technology
 - Equipment automation
 - Operation
 - Shifts selection
 - **Overtime operation**
 - Inventory

- Strategic Planning Decisions
 (Strategic Flexibility)

- Operational Decisions
 (Operational Flexibility)

Case study 1: Simple Hypothetical Case

- Objective:
 - To demonstrate the impact of considering demand uncertainty and operational flexibility on system design during planning stage.

- Which product to which plant?
- What capacity should each plant have?
Case study 1: Simple Hypothetical Case

- System under consideration
 - 2 products, 2 plants, 5 years
- Demand
 - Normal distribution
 - Expected values 200k, standard deviation 50k each year for both
 - No correlation
- Investment cost, as a function of
 - Equipment, tool, building, capacity, process flexibility upcharge
- Operating cost:
 - Operating cost during overtime > Operating cost during normal time

Decision Approaches

<table>
<thead>
<tr>
<th>Demand Uncertainty</th>
<th>Operational Flexibility</th>
<th>DA1</th>
<th>DA2</th>
<th>DA3</th>
<th>DA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>DA1</td>
<td>DA2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>DA3</td>
<td>DA4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimal Decisions under DAs

<table>
<thead>
<tr>
<th>Decision Approach</th>
<th>Considers Demand Uncertainty</th>
<th>Considers Operational Flexibility</th>
<th>Allocation Decision</th>
<th>Capacity Decision</th>
<th>Decision Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA1</td>
<td>No</td>
<td>No</td>
<td>Product A</td>
<td>Plant 1</td>
<td>200k</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Product B</td>
<td>Plant 2</td>
<td>200k</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S2 (2 Dedicated-200k)</td>
</tr>
</tbody>
</table>
Results Evaluation-Simulation Model

Strategic decision candidate

Monte Carlo Simulation (simulate demand uncertainty) (1-5 samples)

Simulation time step (T=1)

Operational Decision Making Module (Linear Programming)

Inner loop

Switch Production of products?

Run Overtime?

Enabled by strategic process flexibility

Enabled by overtime flexibility

Economic outputs for sample i

Outer loop

No

YES

Results Evaluation-VaRG Chart

Results for Case Study 1
Conclusions for Case Study 1

- The impact of considering demand uncertainty:
 - Leads to flexible process design as compared to dedicated process design under deterministic approach
 - As a result, reduces system's risk under demand uncertainty
- The impact of considering overtime flexibility:
 - Enhances the value of strategic process flexibility
 - Reduced investment cost, improved ENPV, min NPV, and max NPV.

Computational Challenge

- Exhaustive search
 - Total number of design alternatives grows exponentially with the number of products and the number of plants
 - i.e. 3 products and 3 plants = 2400 hours
- Stochastic optimization

<table>
<thead>
<tr>
<th># of product</th>
<th># of plant</th>
<th># of variables</th>
<th># of constraints</th>
<th>Computational Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>500</td>
<td>2,000</td>
<td>2 min 46s</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1,000</td>
<td>3,750</td>
<td>>20 hours</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3,750</td>
<td>13,125</td>
<td>13 min 25s</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5,625</td>
<td>18,750</td>
<td>>20 hours</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7,500</td>
<td>24,375</td>
<td>>20 hours</td>
</tr>
</tbody>
</table>

Proposed Method: A Screening Model
Screening Model

Allocation Decision Space

Adaptive One Factor At a Time (OFAT)

Capacity Decision Space

Response Surface Methodology (RSM)

Simulation-based Linear Programming (SLP)

Operation Decision Space

Case Study 2:
Auto Body Assembly System Planning

Which product to which plant?
What capacity should each plant have?

S1
S0
S3
S2

INPUT: An allocation plan

OUTPUT: Identified candidate: Allocation & Plant capacity

Schematic Chart of the Screening Model
Case Study 2

- System under consideration
 - 6 products, 3 plants, and 5 years
- Demand
 - Normal distribution
 - Expected values of demands decrease at 4%/year
 - Standard deviation increases 5%/year
 - Demands are correlated
- Investment, as a function of
 - Equipment, tool, building, capacity, flexibility upcharge
 - Flexibility upcharge, as a function of
 - # of styles, # of platforms, difference between platforms
- Operating cost
 - Includes purchased part cost, assembly material and energy, maintenance, labor cost and overhead cost

Case Study 2: Decisions From Different Approaches

<table>
<thead>
<tr>
<th>Decision Approach</th>
<th>Considers Demand Uncertainty?</th>
<th>Considers Operational Flexibility?</th>
<th>Investment</th>
<th>NPV</th>
<th>ENPV</th>
<th>MIN</th>
<th>MAX</th>
<th>Standard Deviation</th>
<th>VaR@5%</th>
<th>VaG@5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA1</td>
<td>No</td>
<td>No</td>
<td>$340M</td>
<td>$68M</td>
<td>($10.3M)</td>
<td>$117M</td>
<td>32%</td>
<td>$28M</td>
<td>$98M</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>No</td>
<td>No</td>
<td>$324M</td>
<td>$65M</td>
<td>($4M)</td>
<td>$102M</td>
<td>29%</td>
<td>$27M</td>
<td>$92M</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>Yes</td>
<td>No</td>
<td>$359M</td>
<td>$91M</td>
<td>$20M</td>
<td>$20M</td>
<td>19%</td>
<td>$60M</td>
<td>$115M</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>Yes</td>
<td>Yes</td>
<td>$346M</td>
<td>$93M</td>
<td>$26M</td>
<td>$118M</td>
<td>16%</td>
<td>$64M</td>
<td>$114M</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>No</td>
<td>No</td>
<td>$346M</td>
<td>$93M</td>
<td>$26M</td>
<td>$118M</td>
<td>16%</td>
<td>$64M</td>
<td>$114M</td>
<td></td>
</tr>
</tbody>
</table>

Case Study 2: Results

![Graph showing Value at Risk and Gain Chart]
Conclusions For Case Study 2

- The screening model identified different auto body assembly system designs as compared to traditional practice
 - More flexible processes
 - Fewer plants
- The identified design results in big improvement of performance
 - 47% improved ENPV
 - Reduced downside risks
 - Increased upside gain

Contributions

- A framework to design manufacturing system, which considers
 - Demand uncertainty
 - Multiple sources of flexibility
- An integrated screening model that
 - Considers demand uncertainty and multiple sources of flexibility
 - Adaptively explores design space by integrating OFAT, RSM, and SLP methods
 - Is computationally practical to identify good design candidates
- Application in automotive body assembly systems planning
 - The case study shows screening model leads to system design with a 47% improvement of ENPV and reduced downside risks as compared to traditional practice.

Acknowledgement

Prof. Randolph Kirchain
Prof. Richard de Neufville
Prof. Oliver de Weck
Dr. Richard Roth
Dr. Frank Field
General Motors for providing funding
Dr. Xiang Zhao (GM)
Dr. Patrick Spicer (GM)
<table>
<thead>
<tr>
<th>Questions and Comments?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>