Objective

- To develop “dynamic programming”, the method used in lattice valuation of flexibility
 - Its optimization procedure: “Implicit Enumeration”
 - Assumptions: Separability and Monotonicity

- To show its wide applicability
 - Analysis of Flexible Designs
 - Sequential problems: routing and logistics; inventory plans; replacement policies; reliability
 - Non-sequential problems: investments
Outline

1. Why in this course?
2. Basic concept: Implicit Enumeration
 - Motivational Example
3. Key Assumptions
 - Independence (Separability) and Monotonicity
4. Mathematics
 - Recurrence Formulas
5. Example
6. Types of Problems DP can solve
7. Summary

Why in this course?

- DP is used to find optimum exercise of flexibility (options) in lattice that...
- generally has non-convex feasible region
 - Why is this?
 - Exponential growth; also Flexibility to choose
- This presentation gives general method, so you understand it at deeper level
- DP used in lattice is simple version
 - only 2 states compared at any time
Motivational Example

Consider Possible Investments in 3 Projects

What is best investment of 1st unit?
P3 ➔ +3

Of 2nd? 3rd?
P1 or P3 ➔ +2, +2
Total = 7

Motivational Example: Best Solution

Optimum Allocation is Actually (0, 2, 1) ➔ 8

Marginal Analysis misses this...

because Feasible Region is not convex
Point of Example

- Non-convex feasible region “hides” optimum
- Marginal analysis, “hill climbing” methods (such as linear programming) to search for optimum not appropriate in these cases
- Not appropriate for lattice models in particular

- We need to search entire space of possibilities
- This is what “Dynamic Programming” does to define optimum solution

Semantic Note

- “Dynamic” Programming so named because
 - Originally associated with movements through time and space (e.g., aircraft gaining altitude, thus “dynamic”)
 - “programming” by analogy to “linear programming” and other forms of optimization

- Approach useful in many cases that are not “dynamic” – such as motivational example

- Lattice model is “dynamic” as it models evolution across time
Basic Solution Strategy

- Enumeration is basic concept
 - This means evaluating “all” the possibilities
 - Checking “all” possibilities, we must find best
- No assumptions about regularity of Objective Function
- Means that DP can optimize over
 - Non-Convex Feasible Regions
 - Discontinuous, Integer Functions
 - Which other optimization techniques cannot do
- HOWEVER…

Curse of Dimensionality

- Number of Possible Designs very large
- Example: a simple development of 2 sites, for 4 sizes of operations over 3 periods
 - Number of Combinations in 1 period = \(4^2 = 16\)
 - Possibilities over 3 periods = \(16^3 = 4096\)
- General size of design space is exponential
 = \([(Size)^{locations}] \) periods
 - Actual enumeration is impractical
- In lattice model…. See next slide
The Curse -- in lattice model

<table>
<thead>
<tr>
<th>OUTCOME LATTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
</tr>
<tr>
<td>80.00</td>
</tr>
<tr>
<td>64.00</td>
</tr>
<tr>
<td>51.20</td>
</tr>
<tr>
<td>40.96</td>
</tr>
<tr>
<td>32.77</td>
</tr>
<tr>
<td>26.21</td>
</tr>
</tbody>
</table>

- End states = N
- Total States ~ Order of only $N^2 / 2$
- Number of paths ~ Order of 2^N...
 - To reach each state at last stage =
 \[1 + 6 + 13 + 16 + 13 + 6 + 1 = 46 \text{ paths}\]

Concept of Implicit Enumeration

- Complete Enumeration Impractical
- We use “implicit enumeration” (IE)
- IE considers all possibilities in principle
 - without actually doing so (thus “implicit”)
- Exploits features of problem to
 - Identify groups of possibilities that are
 “dominated” -- sets that all demonstrably inferior
 - Reject these groups -- not just single possibilities
 - Vastly reduce dimensionality of enumeration
Effect of Implicit Enumeration

- Because IE can reject groups of inferior (dominated) possibilities
- … it does not have to examine all
- … and reduces size of problem

Specifically: Size of numeration for DP
 - Order of (Size) (Locations)(Periods)
 - Multiplicative size, not exponential
 - This analysis computationally practical

Examples illustrate what this means

Demonstration of IE

- Select a “dynamic” problem – logistic movement from Seattle to Washington DC

- Suppose that
 - there are 4 days to take trip…
 - Can go through several cities
 - There is a cost for the movement between any city and possible city in next stage

- What is the minimum cost route?
Possible routes through a node

- Many routes, with link costs as in diagram
- Consider Omaha
 - 3 routes to get there, as shown
 - 3 routes from there => 9 routes via Omaha

![Diagram showing network of routes with costs]

Notice that problem is a decision tree

- In first stage, 3 choices
 - Another 3 in second, another 3 in third
 - In all 27 different paths
 - Same as a complicated decision tree

![Decision tree diagram with some branches omitted for third stage]
Instead of Costing all Routes… IE

- We find best cost to Omaha (350 via Boise)
- Salt Lake (400), Phoenix (450) routes dominated, “pruned” – we drop routes with those segments
- Thus don’t look at all Seattle to DC routes

Logic of “pruning’ – dropping of routes

- There are many Seattle-DC routes that go through Omaha (9)
- A set of them (3) are between Seattle and Omaha – only one minimum cost level
 – (usually only 1 route, but more might be equal)
- The Seattle-Omaha routes (2) that are not minimum cost are “dominated”
- The routes that contain dominated sections (2 x 3 = 6) can be dropped from consideration
Result: Fewer Combinations

- Total Routes:
 \[= 3 \text{ to Omaha} + 3 \text{ after } = 6 = 3 \times 2, \text{ not } 9 = 3^2\]
- Savings not dramatic here, illustrate idea

![Diagram showing routes and distances between cities.]

Dynamic Programming Definitions (1)

- The Objective Function is \(G(X)\)

- Where \(X = (X_1, \ldots, X_N)\) is a vector, the set of states at each of \(N\) “stages”
 - You can think of \(X\) as a “path” through problem

- To find the optimum “policy” or design, we have to find the \(X_j\) that optimize \(G(X)\)
 - The object is to find the set of links that constitute the optimum overall route through problem
Concept of “Stages”

- A “Stage” is a transition through problem
 - From Seattle to first stop on the trip, for example

- “Stages” may
 - have a physical meaning, as in example,
 - or be conceptual (as the investments in later example) where a “stage” represents the next project or element or “knob” for system that we address

Dynamic Programming Definitions (2)

- In parallel with $G(X)$ which gives overall value
- g_iX_j are the “return functions”
 - They define effect of being in X_j state at the i^{th} stage
- g_iX_j denotes the functional form
 - Such as the costs of going for each link in a stage
- X_j the different states at the i^{th} stage
 - Such as being in Fargo, Omaha or Houston
- So that $G(X) = [g_1X_1, ..., g_iX_j, ..., g_MX_N]$
Concept of “State”

- A “state” is one of possible locations, levels, or outcome for a stage
 - As a location: Fargo, Omaha or Houston
 - As a level: the amount invested (see later example)

- Each \(g_i X_i \) is associated with a “stage”
 - Example: 1st Stage is from Seattle to Boise, etc
 - Thus \(g_i X_j \) are costs from Seattle to Boise, etc

- ... and with a “state” for each stage
 - It is the schedule of costs for stage 1, 2, etc...

Examples of States

- For cross-country shipment, there are 3 states (of system, not as “states” of USA) for 1st stage, Boise, Salt Lake and Phoenix

- For plane accelerating to altitude, a state might be defined by (speed, altitude) vector

- For investments, states might be $ invested

- If stage is “knob” we manipulate on system, “state” is the setting of the knob
Stages and States

- “Stages” are associated with each move along trip
- Stage 1 consists of set of endpoints Boise, Salt Lake and Phoenix, Stage 2 the set of Fargo, Omaha and Houston; etc.
- “States” are possibilities in each Stage: Boise, Salt Lake, etc...

Solution depends on Decomposition

- Must be able to “decompose” objective function $G(X)$ into functions of individual “stages” X_i:
 $$G(X) = [g_1X_1, \ldots, g_MX_N]$$
 - Example: cost of Seattle-DC trip can be decomposed into cost of 4 segments of which Seattle to Boise, Salt Lake or Phoenix is first

- This is the feature that permits us to
 - consider stages 1 by 1,
 - and thus to prune many logical possibilities
Assumptions Needed

- Necessary conditions for decomposition:
 Separability
 Monotonicity

- Another condition needed for DP:
 No Cyclic movement
 (always “forward”)

Separability

- Objective Function is separable if all \(g_iX_i \) are independent of \(g_jX_j \) for all \(J \) not equal to \(I \)

- In example, it is reasonable to assume that the cost of driving between any pair of cities is not affected by that between another pair

- However, not always so…
Monotonicity

- Objective Function is monotonic if: improvements in each g_iX_i lead to improvements in Objective Function, that is if
- given $G(X) = [g_iX_i, G'(X')]$ where $X = [X_i, X']$
- for all $g_iX'_i \geq g_iX''_i$ where X'_i, X''_i different X_i
- It is true that $[g_iX'_i, G'(X')] > [g_iX''_i, G'(X')]$

- For example…

When are functions Monotonic?

- Additive functions always monotonic
- Multiplicative functions monotonic only if g_iX_i are non-negative, real
Solution Strategy

- **Two Steps**
 - Partial optimization at each stage
 - Repetition of process for all stages

- **This is the process used to value flexibility (options) through the lattice**
 - At each stage (period), for each state (possible outcome for system)
 - Process chooses better of using flexibility (exercising option) -- or not using it

Cumulative Return Function

- **Result of Optimization at each stage and state is the “cumulative return function” = \(f_S(K) \)**

- \(f_S(K) \) denotes best value for being in state \(K \), having passed through previous \(S \) stages

- **Example:** \(f_2(\text{Omaha}) = 350 \)

- Defined in terms of best over previous stages and return functions for this stage, \(g_iX_J \):
 \[
 f_S(K) = \text{Max or Min of } [g_iX_J, f_{S-1}(K)]
 \]
 (note: \(K \) understood to be a variable)
Mathematics: Recurrence formulas

- Transition from one stage to next is via a "recurrence formula"
- or equivalent analysis (see lattice valuation)

- Formally, we seek the best we can obtain to any specified level K, by finding the best combination of possible g_iX_j and $f_{s-1}(K)$

Application of Recurrence formulas

- For Example: Consider the Maximization investments in independent projects
 - Each project is a "stage"
 - Amount of Investment in each is its "state"
 - Objective Function Is Additive:
 - Value = Σ (value each project)
 - Recurrence formula: $f_i(K) = \text{Max} [g_iX_j + f_{i-1}(K-X_j)]$
 - that is: optimum for investing K over "i" stages
 - maximum of all combinations of investing level X_j in stage “i” and $(K-X_j)$ in previous stages
Application to Investment Example

- 3 Projects, 4 Investment levels (0, 1, 2, 3)
- Objective: Maximum for investing 3 units
- Stages = projects; States = investment levels

Dynamic Programming Analysis (1)

- At 1st stage the cumulative return function identically equals return for X_1
- That is, $f_1(X_1)$, the best way to allocate resource over only one stage $\equiv g_1X_1$
 - There is no other choice

- So $f_1(0) = 0$
- $f_1(1) = 2$; $f_1(2) = 4$; $f_1(3) = 6$
Dynamic Programming Analysis (2)

- At 2nd stage, best way to spend:
 - 0: is 0 on both 1st and 2nd stage (= 0) = \(f_2(0) \)
 - 1: either: 0 on 1st and 1 on 2nd stage (= 1)
 or: 1 on 1st and 0 on 2nd stage (= 2) BEST = \(f_2(1) \)
 - 2: 2 on 1st, and 0 on 2nd stage (= 4)
 1 on 1st, and 1 on 2nd stage (= 3)
 0 on 1st, and 2 on 2nd stage (= 5) BEST = \(f_2(2) \)
 - 3: 4 Choices, Best allocation is (1, 2) \(\Rightarrow 7 = f_2(3) \)

These results, and the corresponding allocations, shown on next figures…

Dynamic Programming Analysis (3)

- LH Column: 0 in no Project \(f_0(0) = 0 \)
- 2nd Column: 0…3 in 1st project, e.g.: \(f_1(2) = 4 \)
Dynamic Programming Analysis (4)

- For 3rd stage (all 3 projects) we want optimum allocation of all 3 units: \((0,2,1) \) \(f_3(3) = 8 \)

Contrast DP and Marginal Analysis

- **Marginal Analysis:**
 - reduces calculation burden by only looking at “best” slopes towards goal, discards others
 - Misses opportunities to take losses for later gains
 - approach \(\Rightarrow 7 \)

- **Dynamic Programming:**
 - Looks at “all” possible positions
 - But cuts out combinations that are dominated
 - Using independence return functions (value from a state does not depend on what happened before)
Classes of Problems suitable for DP

- **Sequential, “Dynamic” Problems**
 - aircraft flight paths to maximize speed, altitude
 - movement across territory (example used)

- **Schedule, Inventory (Management over time)**

- **Reliability** -- Multiplicative example, see text
 - Flexibility (options) analysis!

- **Non-Sequential: Investment Maximizations**
 - Nothing Dynamic. Key is separability of projects

Formulation Issues

- No standard (“canonical”) form
- Careful formulations required (see text)
- DP assumes discrete states
 - thus easily handles integers, discontinuity
 - in practice does not handle continuous variables
- DP handles constraints in formulation
 - Thus certain paths not defined or allowed
- Sensitivity analysis is not automatic
Dynamic Programming Summary

- The method used to deal with lattices
- Solution by implicit enumeration
- Approach requires
 - separability, monotonicity -- and no cycles
- Careful formulation needed
- Useful for wide range of issues
 -- particularly flexibility, options analyses!