PARADIGM CHANGE IN SYSTEMS ENGINEERING

Richard de Neufville **Professor of Engineering Systems**

Paradigm Change Massachusetts Institute of Technology

Richard de Neufville ©

Where this talk is going

- You system designers and managers can greatly increase expected value of your products
- You need to:
- > "think outside the systems engineering box",
- > rethink process of system design and management.
- You can then
- > make system flexible use "real options"
- > respond intelligently to inevitable uncertainties **INCREASE EXPECTED VALUE**

Paradigm Change Massachusetts Institute of Technology Richard de Neufville © Slide 2 of 13

Serendipity in Design???

- This talk is not about being lucky...
- It is about "making your luck"
- ... About thoughtful engineering design
- ... About creating the conditions that enable you, the system managers, to
- Take advantage of <u>upside opportunities</u>
- Avoid downside eventualities

Paradigm Change Massachusetts Institute of Technology Richard de Neufville ©

Part 1 – Rethinking Systems Engineering

- Engineering design has been linear:
 - > Define "Requirements" -- These come from outside of engineering -- demand forecasts, customer survey, etc
 - > Define, Analyze, Choose Modules, Components, etc.
 - > Assemble Components, Module, System
 - > Job done
- More formally...

Slide adapted from O. de Weck 07

Implicit Assumptions of TSE

- Customers know what their needs are
- The requirements are known and time-invariant
- The system or product can be designed as one coherent whole and is built and deployed in one step
- Only one system or product designed at a time
- The system will operate in a stable environment as far as regulations, technologies, demographics and usage patterns are concerned

Slide adapted from O. de Weck 07

Assumptions of TSE – not Realistic!

- Customers know their needs? New ones emerge!
- The requirements are known?

 These change with needs and new regs, etc, etc.
- The system can be designed as a coherent whole and built and deployed in one step? Often not
- Only one system being designed? Families likely
- The system will operate in a stable environment as far as regulations, technologies, demographics and usage patterns are concerned? We wish...

Paradigm Change Massachusetts Institute of Technology Richard de Neufville Slide 7 of 13

Traditional (Systems) Engineering

- Has been very successful, delivering highly complex systems of all sorts
- However, it can now do better...
- If we step outside its "box" of assumptions
- ... which are unrealistic!

The Reality Is

- Our systems are in the middle of uncertainties
- > Technological change ... IT, Supply-Chain, ...
- > Economic Financial conditions ... Boom and Bust
- > Regulatory... Environmental, trade...
- > Shape of Industry and Competition ... Telecoms...
- > Political... NAFTA, European Union, embargoes...
- > Other ... strikes, fires, hurricanes ...

Bottom Line: Outcomes only known probabilistically

Paradigm Change Massachusetts Institute of Technology Richard de Neufville © Slide 9 of 13

Design involves a distribution of risk

- Outcomes vary in probability
- Consequences of outcomes x probability => pdf (probability distribution function)
- Example: communications satellite system:

Paradigm Change Massachusetts Institute of Technology Richard de Neufville Slide 10 of 13

Part 2 – Opportunity for Greater Value

- Change the distribution of outcome; increase value
- Key: flexibility to adapt design to actual circumstances
 - > Avoid downside risks
 - > Exploit Upside Opportunities

Opportunity Results from

- Recognition of Uncertainty
- ... Leading to Analysis of Possible Outcomes
- ... And Motivation to Improve Performance
- ... Measured in Expected Value

20 to 30 % Increases in Value Routine!

Slide adapted from Jijun Lin

Example: Design for Major Oil Company

About 30% Increase in Value from 2.7 to 3.5 Billion \$

Paradigm Change Massachusetts Institute of Technology Richard de Neufville Slide 13 of 13