PliF

Design of Engineering Systems under Uncertainty via Real Options and Heuristic Optimization

Rania Hassan rhassan@mit.edu Richard de Neufville ardent@mit.edu

Value Metric (millions of dollars)	Rigid	Flexible Demo	Optimal, Flexible with Highest E(NPV)	Pseudo-Optimal Flexible with Low Cost
E(NPV)	822	684	929	900
STD(NPV)	285	283	165	334
Min Possible Gain	358	234	788	308
Max Possible Gain	1286	1142	1148	1334
E(PV(Cost))	1006	780	969	688

l'liT								
	Computational Cost							
	Computational Cost Metric	Rigid	Flexible					
	Design Variables	19	91					
	Variable Coding in Bits	28	208					
	Exhaustive Design Space	268 x 10 <u>6</u>	411 x 10 <u>60</u>					
	GA Function Evaluations	14 x 10 <u>3</u>	17 x 10 <u>4</u>					
	GA Computational Time (mins)	< 1	150					
rhassan@m	it.edu			15				

Wirds of Wisdom on Flexibility in System Design

- Flexibility is not an objective in itself; the impact of flexibility on system performance is the objective.
- Flexibility does not mean and is not only achievable via staged deployment
- Flexibility is not revenue management in engineering projects
- Traditional financial options analysis and valuation approaches, i.e. Black-Scholes formula and derivatives, do not apply to engineering design.
- Value-at-Risk analysis presents a simple, transparent, but powerful approach to valuing flexibility in engineering projects.
- Flexible designs do not necessarily require larger initial capital expenditure as compared to rigid designs.
- Flexibility is not the enemy of optimality. rhassan@mit.edu

16