Black-Scholes Valuation

Richard de Neufville
Professor of Engineering Systems and of Civil and Environmental Engineering
MIT

Outline

• Background

• The Formula
 – Applicability; Interpretation; Intuition about form
 – Derivation principles

• Stochastic processes background
 – Random walk; Wiener Process (Brownian motion)
 – Ito Process; Geometric Brownian Motion

• Derivation background

• Applicability of this material to design
Meaning of “options analysis”

- Need to clarify the meaning of this term
- Methods presented for valuing options so far (lattice, etc) are all analyzing options. In that sense, they all constitute “options analysis”
- HOWEVER, in most literature “options analysis” means specific methods – based on replicating portfolios and random probability – epitomized by Black-Scholes

Keep this distinction in mind!

Background

- Development of “Options Analysis” Recent
- Depends on insights, solutions of
 - Black and Scholes; Merton
 - Cox, Ross, Rubinstein
- This work has had tremendous impact
 - Development of huge markets for financial options, options “on” products (example: electric power)
- Presentation on options needs to discuss this – although much not applicable to engineering systems design
Key Papers and Events

- **Foundation papers:**

- **Events**
 - “Real Options” MIT Prof Myers ~ 1990
 - Nobel Prize in 1997 to Merton and Scholes (Black had died and was no longer eligible)

Black-Scholes Options Pricing Formula

\[C = S \times N(d_1) - [K \times e^{-rt} \times N(d_2)] \]

It applies in a very special situation:
- a **European call**
- on a **non-dividend paying asset**

“European” ≡ only usable on a specific date
“American” ≡ usable any time in a period (usual situation for options “in” systems)

“no dividends” -- so asset does not change over period
Black-Scholes Formula -- Terms

\[C = S \times N(d_1) - [K \times e^{-rt} \times N(d_2)] \]

- \(S \), \(K \) = current price, strike price of asset
- \(r \) = risk-free rate of interest
- \(t \) = time to expiration
- \(\sigma \) = standard deviation of returns on asset
- \(N(x) \) = cumulative pdf up to \(x \) of normal distribution with average = 0, standard deviation = 1

\[
\begin{align*}
 d_1 &= \frac{\ln(S/K) + (r + 0.5 \sigma^2)t}{\sigma \sqrt{t}} \\
 d_2 &= d_1 - (\sigma \sqrt{t})
\end{align*}
\]

Black-Scholes Formula -- Intuition

\[C = S \times N(d_1) - [K \times e^{-rt} \times N(d_2)] \]

Note that, since \(N(x) < 1.0 \), the B-S formula expresses option value, \(C \), as
- a fraction of the asset price, \(S \), less
- a fraction of discounted amount, \((K \times e^{-rt}) \)

These are elements needed to create a replicating portfolio (see “Arbitrage-enforced pricing” slides). Indeed, B-S embodies this principle with a continuous pdf.
Black-S Formula – Derivation Principles

- Formula is a solution to a “Stochastic Differential Equation” (or SDE) that defines movement of value of option over time

- SDE’s defined by Ito from Japan
 - the general form known as an “Ito Process”

- Specific form of equation solved
 - embodies principle of replicating portfolio
 - makes specific assumptions about nature of movement value in a competitive market

- These ideas discussed next

Random Walks

- A “Standardized Normal Random variable”, e(t)
 - It is a “Normal” distribution (bell-shaped)
 - Mean ≡ 0 ; Standard deviation ≡ 1

- A “random walk” is a process defined by
 - \(z(t + 1) = z(t) + e(t) (\Delta t)^{0.5} \)

- Difference between 2 periods: \(z(t_k) - z(t_j) \)
 - Expected value = 0 ; Variance = \(t_k - t_j \)
 - Differences for non-overlapping periods are uncorrelated

- This is a random process
Wiener Process

- This is result of “random walk” as Δt ➞ 0
- Formally: \(z(t + 1) = z(t) + e(t) (Δt)^{0.5} \)
- Becomes: \(dz = e(t) (Δt)^{0.5} \)

- Also known as “Brownian Motion” in science or “white noise” in engineering

- As for random walk:
 - \(z(t) - z(s) \) is a normal random variable
 - for any 4 times \(t_1 < t_2 < t_3 < t_4 \) \[z(t_1) - z(t_2]\] and \[z(t_3) - z(t_4)\] are uncorrelated

Generalized Wiener process

- An extension of Brownian motion
 \(dx(t) = a \ dt + b \ dz \)

- In short, it
 - represents a growth trend: \(a \ dt \)
 - Plus white noise: \(b \ dz \)

- It can be solved: \(x(t) = x(0) + a \ t + b \ z(t) \)

- This is similar to what lattice represents – but see next slides
Ito Process

- A further extension...

 - Basic Eqn: \(dx(t) = a \, dt + b \, dz \)
 - Becomes: \(dx(t) = a(x, t) \, dt + b(x, t) \, dz \)

- In short, coefficients can change with time

- This is a “stochastic differential equation”
 - Stochastic because it varies randomly with time

Application to Asset Prices -- GBM

- Asset prices assumed to fluctuate around a multiplicative growth trend
 - For example \(S_0 \rightarrow u \, S_0 \) or \(d \, S_0 \)

- The continuous version of this is:
 \[d \, [\ln S(t)] = \nu \, dt + \sigma \, dz \]
 - This is a generalized Wiener process

- With solution: \(\ln S(t) = \ln S_0 + vt + \sigma \, z(t) \)

- This is: Geometric Brownian Motion (GBM)
Standard Ito form

- This is the solution for \(S(t) \)....

- \[
 \frac{d S(t)}{S(t)} = (v + 0.5 \sigma^2) \, dt + \sigma \, dz
\]
 - Solution not obvious -- A special case of Ito’s lemma

- Interpret this as saying that:
 Relative change of asset value, \(\frac{d S(t)}{S(t)} \)
 = a trend (constant) \(dt \)
 + random factor scaled by \(\sigma \)

- Alternatively: \[
 d S(t) = \mu S \, dt + \sigma S \, dz
\]
- where \(\mu = v + 0.5 \sigma^2 \) [0.5 \(\sigma^2 \) is correction factor]

Ito’s lemma

- If: \(x(t) \) is defined by Ito process
 \[
 dx(t) = a(x, t) \, dt + b(x, t) \, dz
 \]

- And \(y(t) = F(x, t) \) some function (or “derivative” or specifically an option)

- Then:
 \[
 d y(t) = \left\{ (\delta F/\delta x) a + \delta F/\delta t + 0.5(\delta^2 F/ \delta x^2)b^2 \right\} dt
 + (\delta F/\delta x) b \, dz
 \]

- In words: given a “derivative” of an asset, \(F(x, t) \),
 we have an equation defining value of derivative
Derivation Background

- Suppose value of Asset is random process:
 \[d S(t) = \mu S \, dt + \sigma S \, dz \]
- And that we can borrow money at rate \(r \)
- The price of a derivative (an option) \(f(S,t) \) of this asset satisfies the Black-Scholes equation:
 \[\frac{\partial f}{\partial t} + (\frac{\partial f}{\partial S}) r \, S + (\frac{\partial^2 f}{\partial S^2}) \sigma^2 S^2 = rf \]
- Unless this property is met – arbitrage opportunity exists
- Solution to equation defines price of derivative

Black-Scholes Formula as Solution

- It is the solution to the Black-Scholes equation
- Meeting the boundary conditions:
 - It is a call
 - There is only 1 exercise time (European option)
 - The asset “pays no dividends” – that is, gives off no intermediate benefit (mines or oil wells generate ‘dividends’ in exploitation, so B-S does not apply)
- Development a brilliant piece of work
- Why do we care?
Why does this matter?

- Development of Formula showed the way for financial analysts

- Essentially “no” other significant closed form solutions...

- But solutions worked out numerically through lattice (and more sophisticated) analyses

- Led to immense development of use of all kinds of “derivatives” (an alternative jargon word that refers to various options)

Why does this matter TO US?

- What does B-S mean to designers of technological systems?

- Important to understand the assumptions behind Black-Scholes equation and approach

- Extent these assumptions are applicable to us, determines the applicability of the approach

- Much research needed to
 - address this issue
 - Develop alternative approaches to valuing flexibility
Price Assumption

- B-S approach assumes Asset has a “price”

- When is this true?
 - System produces a commodity (oil, copper) that has quoted prices set by world market

- When this may be true
 - System produces goods (cars, CDs) that lead to revenues and thus value – HOWEVER, product prices depend on both design and management decisions

- When this is not true
 - System delivers services that are not marketable, for example, national defense...

Replicating Portfolio Assumption

- B-S analysis assumes that it is possible to set up replicating portfolio for the asset

- When is this true
 - Product is a commodity

- When this might assumed to be true
 - Even if market does not exist, we might assume that a reasonable approximation might be constructed (using shares in company instead of product price)

- When this is probably a stretch too far
 - Private concern, owners unconcerned with arbitrage against them, who may want to use actual probabilities...
Volatility Assumption

- B-S approach assumes that we can determine volatility of asset price

- When this is true
 - There is an established market with a long history of trades that generates good statistics

- When this is questionable
 - The market is not observable (for example, because data are privately held or negotiated)
 - Assets are unique (a prestige or special purpose building or special location)

- When this is not true
 - New technology or enterprise with no data

Duration Assumption

- B-S approach assumes volatility of asset price is stable over duration of option

- When this is true
 - Short-term options (3 months, a year?) in a stable industry or activity

- When this is questionable
 - Industries that are in transition – technologically, in structure, in regulation – such as communications

- When this is not true
 - Long-duration projects in which – major changes in states of markets, regulations or technologies are highly uncertain (Exactly where we want flexibility!)
Take-Away from this Discussion

- In many situations the basic premises of “options analysis” – as understood in finance – are unlikely to apply to the design and management of engineering systems

- Yet these systems, typically being long-life, are likely to be especially uncertain – and thus most in need of flexibility – of “real options”

- We thus need to develop pragmatic ways to value options for engineering systems

TOPIC OF SUBSEQUENT PRESENTATIONS

Summary

- Black-Scholes formula elegant and historically most important

- Its derivation based on some fundamental developments in Stochastic processes
 - Random walk; Wiener and Ito Processes; GBM

- Underlying assumptions limit use of approach
 - Price; Replicating Portfolio; Volatility; Duration

- Developing useful, effective approaches for design is an urgent, important task
Appendix

MEAN REVERSION PROCESSES

The Concept

- “Mean Reversion”: the concept that a variable process wants to revert (= come back to) some natural level (which would be its long-run average value)

- Physical analogy: A spring (think of a shock absorber on a car) that
 - has an equilibrium position
 - Counteracts any displacement (stretch or squish)
 - With force proportional to displacement (stronger further away from mean)
Applicability

- Mean Reversion widely associated with commodities of all sorts (oil, copper, money)

- The economic rationale is that demand and supply should be in equilibrium

Limitations

- Supply curve shifts over time
 - “low hanging fruit” get picked – low cost oil fields or mines are exhausted – so shifts upward
 - short-run and long-run costs differ (it takes time to develop new sources), so shifts at extremes

- Demand curve also shifts over time
 - Economic booms (dot.com, China construction)
 - ... and busts
 - Technology shifts (glass fibre replace copper wire)

- So notion of equilibrium somewhat fuzzy...
Practice

- Mean reverting models of stochastic processes widely used. Many believe them to be more realistic than binomial diffusion

- However, no definitive proof (which would in any case depend on product)

- Available commercially (e.g. Crystal Ball ®)

- They come in various versions, an example follows…

Arithmetic Mean Reversion

- The Generalized Brownian motion model is:
 \[d \ln S(t) = \nu \, dt + \sigma \, dz \]
 (Slide 14)

- An arithmetic mean reversion process can be:
 \[d \ln S(t) = \nu \left[m - x \right] \, dt + \sigma \, dz \]

Where \(x = \ln S \)

- Follow up reading:

 Also: http://www.puc-rio.br/marco.ind/revers. html