Adjusting discount rate for Uncertainty

- The Issue
- A simple approach: WACC
 - Weighted average Cost of Capital
- A better approach: CAPM
 - Capital Asset Pricing Model

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 1 of 34

Semantic Caution Uses of the words "risk" and "uncertainty"

- Traditional Engineering assumes
 - variability in outcomes leads to bad events
 - equates uncertainty with downside, with "risk"
- But: variability may give upside opportunity
 - so, we should generally think of "uncertainty"
 - I will try to use this term whenever possible
- This presentation uses "risk" where the economic literature uses this term

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 2 of 34

Background: Aversion to "Risk"

- What is "risk aversion"?
- People prefer projects with less variability in return on investment
- Thus: people require some premium (extra payment) before they will accept projects with more uncertainty
- The result: people will want to adjust discount rate for uncertainty
- See examples...

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 3 of 34

Example

- · A Simple Game:
 - I Am Ready to Give Away \$1 On Coin Toss
 - If Heads, I Give Away; If Tails, I Keep Money
 - Probability of Heads = 50% Expected Value = \$ 0.50
 - How Much Would You, Individually, Pay Me For The Opportunity To Play This Game?

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 4 of 34

Slightly Different Example

- A Repeat of Simple Game:
 - I Am Ready to Give Away \$10 On Coin Toss
 - If Heads, I Give Away; If Tails, I Keep Money
 - Probability of Heads = 50% Expected Value = \$ 5
 - How Much Would You, Individually, Pay Me For The Opportunity To Play This Game?

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 5 of 34

Interpretation of Example

- Averages Not The Basis For Most People's Choice
- People Decide on the Basis of "Real Value" ≡ Utility
- They are "Risk Averse", their Utility Typically Is Non-Linear

\\ \\-\

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 6 of 34

Consider this example...

- Consider two investments of \$1000
 - Savings account with annual yield of 5%
 - Stock with a 50:50 chance of \$1200 or \$900 in a year

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 7 of 34

Investors Prefer Less Uncertainty

- Expected returns are identical:
 - Savings account = 5%
 - Stock = {[0.5*(1200 + 900) -1000] / 1000 }* 100% = 5%
- Which would you prefer?
- In general, for same return, investors prefer project with more reliable, less uncertain returns
- What if stock had a 75% chance of selling for \$1200?
 At some higher return, we prefer uncertain project

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 8 of 34

General Perspective on Risk vs Return

- Two key observations regarding preferences
- Non-satisfaction
 - For a given level of risk, the preferred alternative is one with the highest expected return (A > C)
- Risk Aversion
 - For a given level of return, the preferred alternative is one with the lowest level of risk (A > B)

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 9 of 34

Adjusting discount rate for Uncertainty -- simple approach

- Weighted Average Cost of Capital (WACC)
- Recall: WACC represents average return
 R for equity (Equity %) + R on Bonds (Bond %)
- Returns on Equity and Bonds depend on "risk" of company. Established company generally more certain than start-up
- Thus: WACC represents risk of company

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 10 of 34

When is WACC good adjustment for uncertainty?

- WACC represents average for company
- ... So, it may be right for average projects
- What adjustment right for unique projects?
- More generally, how do we define discount rates for projects in uncertain world?
- Note: Logic is that since projects uncertainties differ, so should their discount rates. A company thus might use several!

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 11 of 34

Adjusting discount rate for Uncertainty a better approach

- The Capital Asset Pricing Model (CAPM)
 - Assumptions about investor attitudes
 - Components of Uncertainty
 - Principle of diversification
 - Beta a formal measure of "risk"
 - CAPM relation between return and "risk"
 - Expected return from unique projects
- Use of CAPM for project evaluation

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 12 of 34

Some Observations on how returns vary with uncertainty

- "Risk-free" rate defined as return if no variability
- Investments with greater variability are riskier
- variability and expected return are correlated
- Suggestive data from a few years ago:

Security	Expected Return %	Variability: Standard Deviation of Expected Returns (%)
Risk free	5	0
U.S Treasuries	7.7	3.3
Fixed Income	9.0	9.0
Domestic Equity	12.7	18.5
International Equity	12.9	19.4
Real Estate	12.9	16.9
Venture Capital	18.6	33.0

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 13 of 34

Greater Variability => Greater Expected Return

An upward trend

A Note on "risk-free" rate

- In one sense the "risk-free" rate is theoretical
 - what investment is entirely free of risk?
 - Note: you may be sure of getting money back, but may have lost due to inflation...
- In options analysis, "risk-free" rate needs a number
 - this is taken to be rate of US Government bonds
 - on grounds that these are safest investments (do not ask me to defend this view)
 - this rate depends on life of the bond, that is, the time to maturity (such as 6 months, 10 years...)

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 15 of 34

Components of Uncertainty

- Useful to recognize 2 types of uncertainties
- Using standard terms:
- Market Risk (systematic, non-diversifiable)
 - Investments tend to fluctuate with outside markets
 - Declines in the stock market generally affect all stocks
- Unique or Project Risk (idiosyncratic, diversifiable)
 - Individual characteristics of investments affect return
 - An investment might be better or worse than overall market trends, because of its special characteristics
- What compensation should investors demand for each type?

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 16 of 34

Diversification

- A collection of projects (a portfolio) 'diversifies' the variability in return (has different ones)
- It reduces Unique Risks
- Why is this?
- Because ups in one project counterbalance downs in others thus lowering variability of portfolio

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 17 of 34

Role of Diversification

- Consider this example of two stocks:
 - A: Expected return = 20%,Standard Deviation of Expected Returns = 20%
 - B: Expected Return = 20%Standard Deviation of Expected Returns = 20%
- If portfolio has equal amounts of A and B
 - Expected return = 0.5*20% + 0.5*20% = 20%
 - What is Standard Deviation?
- In general, standard deviation of return on portfolio is NOT average of that of individual stocks!

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 18 of 34

Standard Deviation for a Portfolio

- Portfolio standard deviation is not a weighted average
- Portfolio standard deviation

$$\sigma_{p} = \sqrt{\sum_{i} \sum_{j} \mathbf{x}_{i} \mathbf{x}_{j} \sigma_{l} \sigma_{j} \rho_{ij}}$$

for a portfolio of N investments, with i, j = 1 to N

x_i, x_j = Value fraction of portfolio represented by investments i and j

 σ_{i} , σ_{j} = Standard deviation of) investments i and j ρ_{ij} = Correlation between investments i and j ρ_{jj} = 1.0

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 19 of 34

Standard Deviation of 2 Stock Portfolio

- Invest equal amounts in two stocks
 - For both A & B: Expected Return = 20%, Standard Deviation = 20%

 $\sigma_{\rm p} = \sqrt{(0.5)(0.5)(0.2)(0.2)(1) + (0.5)(0.5)(0.2)(0.2)(1) + (2)(0.5)(0.5)(0.2)(0.2)\rho_{\rm ab}}$

• Portfolio standard deviation depends on correlation of A, B (ρ_{ii})

Correlation Between A & B	Portfolio Standard Deviation	Portfolio Expected Return
1	20.0%	20%
0.5	17.3%	20%
0	14.1	20%
-1	0.0%	20%

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 20 of 34

Conclusions from Example

- Most investments not perfectly correlated (correlation, ρ_{ij} < 1)
- Holding portfolio reduces standard deviation of value of portfolio, thus reduces "risk"
- With negative correlation, can eliminate all "risk"

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 21 of 34

Generalization for Many Stocks

 $_{\bullet}$ Formula for standard deviation $\sigma_{_{p}}$ of portfolio

$$\sigma_{\rm p} = \sqrt{\sum_{\rm i} \sum_{\rm i} \mathbf{x}_{\rm i} \mathbf{x}_{\rm i} \sigma_{\rm i} \sigma_{\rm i} \rho_{\rm ij}} = \sqrt{\text{portfolio variance}}$$

- For a portfolio of N stocks in equal proportions (x_i = x_i = 1/N)
 - N weighted variance terms, $i = j \rightarrow \sigma^2_i$
 - (N^2-N) weighted cov. terms, i , j \rightarrow $\sigma_i \sigma_i \rho_{ii}$
- Var(P) = N*(1/N)^2* Average Variance + (N^2-N)*
 (1/N)^2*Average Covariance
- Var(P) = (1/N)*Av. Variance + [1-(1/N)*] Av. Covariance

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 22 of 34

Implications of diverse portfolio

 $\sigma_{\rm p} = \sqrt{(1/{\rm N})^*}$ Average Variance + (1-(1/N)) Average Covariance

- For large N, 1/N => 0
 - Average variance term associated with unique risks becomes irrelevant !!!
 - This is fundamentally important: investors do not need worry about uncertainties of individual projects. They can diversify out of them.
 - Covariance term associated with market risk remains. This is what investors must focus on!

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 23 of 34

Defining a Formal Measure of Risk

- Investors expect compensation for systematic, undiversifiable (market) risk
- Standard deviation of returns reflects market & unique risks
- Need method to extract market portion of risk
- Define reference point: the market portfolio (MPf), which is the full set of available securities

r_m = Expected return for MPf

 σ_m = Standard deviation of expected returns on MPf

Beta: index of investment risk compared to MPf:

$$\beta_i = \rho_{i,m} \sigma_i / \sigma_m$$

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 24 of 34

What Does Beta Imply?

- By definition, the market portfolio has beta = 1.0
- Beta describes the relative variability of returns
 - Concerned with correlated (systematic) portion of returns
 - If investment amplifies movements in MPf beta > 1
 - If attenuates, movements in MPf

beta < 1

- Greater Beta reflects market risk of an investment
 - => higher returns for investments with higher betas
- Beta calculated for either individual investments or portfolios
- Portfolio beta = weighted average of individual betas

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 25 of 34

Efficient Frontier for Investments

- Example demonstrated role of diversification
- Combinations of many securities result in optimum
 - Maximum return for given risk level
 - Minimum risk for given level of return
- · Sub-optimal combinations lie below, to right of frontier

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 26 of 34

Combining Risk-Free and Risky Investments

- Investors can mix "risky" and "risk-free" investments to balance return and "risk"
- · For any combination of risk-free and risky investing
 - Expected return is weighted average of risk-free (Rf) and portfolio return (Rp)
 - Standard deviation of Rf = 0

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 27 of 34

CAPM Defines Premium due to Risk

- The line representing best returns for risk is the CAPM line
- This is crux of Capital Asset Pricing Model -it gives price (risk premium) for assets

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 28 of 34

Determining Discount rate for Individual Investments

- CAPM models maximized expected return
- Beta indexes risk of individual investment to market portfolio
- Market portfolio is tangent point in CAPM
- Relation between beta and individual expected return results in:

Relation of Expected Return and Beta

- Security Market Line (SML)
 - -- Rp = Rf + Bp*(Rm Rf)
 - Rm is expected return of market portfolio
 - Rm Rf is the market risk premium
- to be evaluated
 For the market portfolio,
 Bm = Bp = 1

- Bp = beta of investment

 For other investments, expected return scales with Bp

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 30 of 34

Implementing the CAPM: From Theory to Project Evaluation

- Theory: Project discount rate should be based on project beta
 - Investors can diversify away unique project risks
 - Adjustment apparent if project is carbon-copy of firm (McDonald's #10,001) ==> WACC applies
- Practice: adjustment not trivial on most projects
 - Consider past experiences, returns in comparable industries
 - Detail unique aspects of specific project
 - Apply information to adjust discount rate

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 31 of 34

A General Rule for Managers

• CAPM translates to a simple rule:

Use risk adjusted discount rate to calculate NPV for projects, Accept all positive NPV projects to maximize value

- Shareholders can avoid unique risks by diversifying, holding multiple assets
- If projects valued properly, wealth is maximized

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 32 of 34

Difficulties in Practice

- Estimating project beta may not trivial
- Budget constraints conflict with positive NPV rule
- Employees worry about unique project risks
 - Career can be adversely affected by bad outcomes
 - Generally cannot diversify (limited to few projects)
 - Issue might be addressed through proper incentives
- Reliance on past results to dictate future choices
- Individuals, companies are often "risk positive"
 - Entrepreneurs
 - Sometimes may "bet the company"

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 33 of 34

Summary

- CAPM adjusts discount rates for uncertainty
 - Models maximum expected return for level of "risk"
 - Based on observations of securities markets
- Unique "risks" can be diversified
- Investors expect compensation for "market risk"
- Standard deviation of returns reflects both market & unique risks
- Beta is index of market part of investment risk
- Security Market Line relates expected return to beta
 - --Rp = Rf + Bp*(Rm Rf)
- Moving from theory to practice can be problematic

Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © CAPM Slide 34 of 34