Simulating Airport Delays and Implications for Demand Management

1.231: Course Project

Vikrant Vaze
Delays are a big problem! and something needs to be done

- Delay cost to airlines and passengers = $16.5B
- Total operating profit of domestic carriers = $4.4B

Main cause is the demand-capacity mismatch

So what to do?

- We can reduce delays by:
 - Decrease in Demand and/or Increase in Capacity
- Delays will reduce...
 - But by how much?
 - What are the negative effects? Do the pros outweigh than the cons?
 - What strategies are the best?
- We need to know the effects of delay reduction before actually implementing it
...so we Simulate Queues

- **M|G|1 model with a ‘schedule’:**
 - Poisson arrival process: but with a schedule
 - Flight arrivals do have a schedule. So we will choose a process *somewhat less random than pure Poisson*
 - Moderate variation in service times (±5%)
 - More random than cumulative diagrams
Simulator Design

• Divide the entire day into discrete time periods (1 hour)
 – Actual demand per period equals scheduled number of arrivals (inconsistent with Poisson)

• For every arrival in the interval: \(t_0 \) to \(t_0+1 \)
 – Simulate actual arrival time \(\sim U[t_0, t_0+1] \) (Consistent with Poisson)
 – Simulate actual service time \(\sim U[0.95\mu, 1.05\mu] \)

• Tried Pure Poisson: Led to unrealistic results => Discarded

• For constant average service time:
 – Delay variance increases with increase in service time variance
 – Average delay increases with increase in service time variance

• Single server assumption: best for convenience and practicality
Choice of Sample Size

• Most important decision: Sample size
 – Greater the sample size lower is the variance of simulation statistics: **Good**
 – Greater the sample size more is the run time: **Bad**
 – Tradeoff

![Graph showing tradeoff between log(delay variance) and log(run time) vs. sample size (log scale)]
Delays when Capacity Exceeds Demand

- Delays can and do occur even when demand is lower than capacity

LGA under VFR
Average Vs Marginal Delays

- Average delays: depend on queue history
- Marginal delays: depend on queue future

LGA under IFR
Impact of GDP...

- Persists way beyond the end of capacity reduction period

JFK

Capacity back to normal

Impact of GDP persists
Implications for Demand Management

• Quantity based demand management
 – Delays depend almost entirely on the declared capacity and not on how slots are distributed among different airlines
 – Administrative Controls and Slot Auctions:
 • Extremely different from social welfare and economic efficiency perspective
 • Very similar from delay perspective

• Price based demand management
 – External costs computed in the absence of congestion pricing provide only a lower bound
 – Finding equilibrium prices is a fixed point problem
 – Solving iteratively has no guarantees of convergence
Quantity based Demand Management

• Capping the capacity at IFR level:
 – Analysis of one entire year of GDP data at LGA
 – 6 different categories based on weather conditions
 – A **4.2%** reduction in operations results in **47%** delay reduction
Price based Demand Management

- Demand depends on marginal delays (assume linear demand function)
- Marginal delays depend on demand
- Solution of a fixed point problem:
 - Solving a system of non-linear simultaneous equations

\[
D (C_T) = \max (D_0 - \alpha C_T, 0)
\]

\[
C_T = C_I + C_C
\]

\[
C_T = MC (D)
\]

- Calculation of MC(D) requires simulating delays
- We will try to solve using two different algorithms
 - Alternate
 - Alternate with moving averages
Alternate Algorithm

• Use each equation alternately
 – Start with a MC and D value.
 – Get D from MC, the MC from D then D from MC etc ...

– Keeps oscillating back and forth; does not converge
Alternate with Moving Averages

- Same as before, but use moving average of successive D values

- Converges very fast

- Fixed point:
 - Equilibrium Demand = 42 flights/hr, Congestion Toll = $11,815
Key Takeaways

• Delay simulator provides intuition about delay characteristics
 – Easy to code and test various concepts about dynamic queues
 – No added complexity for testing complex distributions

• Delays vary with instantaneous demand and capacity
 – Average and marginal delays also depend on the history and future behavior of queues

• Very small changes in demand may lead to drastic delay reduction

• Simulator can be used to test the theoretical and computational aspects of congestion pricing